
Project - MAGIC - Preprocessing Phase

1

Submitted by: Faddy Saad.

MAGIC’s site: http://magicmapping.sourceforge.net

Introduction

MAGIC, (a rearrangement of an Integrative and Accurate method for Comparative

Genome Mapping) is a tool for comparing two genomes (Swidan et. al., PLoS CB, 2006). It consists

of two phases: A preprocessing phase for identifying maximal similar segments, and a mapping phase

for clustering and classifying these segments. MAGIC's main novelty lies in its biologically intuitive

clustering approach, which aims towards both calculating reorder-free segments and identifying

orthologous segments. MAGIC also handles nuisance cross overlaps resulting from duplications that

occurred before the speciation of the considered organisms from their most recent common ancestor.

MAGIC is both robust and scalable: The former is asserted with respect to its initial input and with

respect to its parameters' values. The latter enables applying MAGIC to distantly related organisms

and to large genomes.

MAGICs improvements allow a comprehensive study of the diversity of genetic repertoires resulting

from large-scale mutations, such as, indels and duplications, including explicitly transposable and

phagic elements. MAGIC enables to conduct a comprehensive analysis of the different forces shaping

genomes from different clades, and to quantify the importance of novel gene content introduced by

horizontal gene transfer relative to gene duplication in genome evolution.

MAGIC’s result can be used as well to investigate the breakpoint distribution in genomes.

In this document we describe a C/C++ implementation of the first phase of MAGIC, i.e., the

preprocessing phase (PrePro). For more details on MAGIC we refer the reader to (Swidan et. al., PLoS

CB, 2006).

Preprocessing Phase - Description

The input to the preprocessing phase constitutes two anchor files containing labeling of genomic

segments of interest - which we refer to as KOs - in the two organisms, as well as two files containing

the genomic sequence of the organisms (in the meanwhile MAGIC can handle only unichromosomal

genomes). The output of the preprocessing phase is a comprehensive table of all maximal similar

segments between the two genomes. Manipulating the input files to calculate the comprehensive table

is done in six steps. We first give a verbal description of these steps, and then provide a detailed

formal algorithmic description:

1. Calculating Unique Common Anchors: The input anchor files (named *.anchor) contain tab-

delimited tables with the following columns “Orientation Start End KO”. The

“Orientation” column describes the strandedness of the segment (and equals “+” or “-“), the “Start”

(“End”) refers to the starting (ending) coordinate in the genomic sequence (and equals to a natural

number or an integer), and the KO column contains the label of the entry (i.e., a general string). In this

step, we seek to find the unique common anchors between these two files. The files, however, may

Project - MAGIC - Preprocessing Phase

2

contain illegal entries. Hence, we first scan the files, remove these illegal entries, and output a new

clean anchor file (named *.anchor.clean).

Examples of Illegal entries:

+ 12312hhsh 12123333 KO327

A 12121 123121 KO2311

- 983738 9918281 OK122

To calculate the unique common anchors, we are assisted by the standard template library (STL) to use

data structures preserving the uniqueness quality of their objects (in our case, anchors’ labels).

The output of this part is saved by default in a file (Intersection.res).

The time complexity of this step is O(N*logN) (where N is the number of legal entries).

2. Calculating KO Induced Segments (KISs): Based on the common unique anchors, one can

calculate a coarse mapping between the two genomes by generating runs of successive anchors (with

identical orientation). To do that, we search for maximal anchor runs (based on the result of Step 1).

We refer to the resulting segments as KO induced segments (KISs).

By default, the program generates a file (KISs.res) containing the final result. This file has the

following format:

KISi Start1 End1 Start2 End2 Orientation

KISi: A unique name for the KIS.

Start1: The starting coordinate of the entry in the first genome.

End1: The ending coordinate of the entry in the first genome.

Start2: The starting coordinate of the entry in the second genome.

End2: The ending coordinate of the entry in the second genome.

Orientation: The relative orientation of the KOs assembling the KIS between the two genomes (note

that orientation here differs from the one given in the anchor files).

The time complexity of this step is O(N*logN) (N is the number of KOs).

3. Global Alignment on KISs: The KISs produced in Step 2 represent a coarse mapping. To verify

the similarity of the segments in the KIS table, we globally align them. Since the genomic segments

might be very long, exact global alignment methods cannot be used. Instead, we use MAFFT (Katoh

et. al. , NAR, 2005; see also http://www.biophys.kyoto-u.ac.jp/~katoh/programs/align/mafft/) , a fast

heuristic (with moderate memory requirements) for the global alignment.

MAFFT’s time complexity:

MAFFT requires CPU time effectively proportional to the

average sequence length L for amino acid or

nucleotide sequence alignments consisting homologues of a single gene.

Both memory and time complexities of MAFFT are O(L) (Katoh et. al. , NAR, 2005).

4. Extracting Unmatched Regions: To refine the coarse KIS mapping, we search for unmatched

regions in the results of the global alignments performed in Step 3. The unmatched regions are either

segments that have undergone reordering (and thus disturb the collinear global alignment) or indels.

To distinguish between the two cases, we search the other genome for hits based on these regions (in

Step 5). If hits are found, the unmatched regions might result from reordering mutations (this is

determined in the mapping phase), or otherwise they are most likely indels. The unmatched regions are

Project - MAGIC - Preprocessing Phase

3

constructed by joining close gaps in each of the two genomes separately (< gapJoinLen parameter, see

Table 1). Afterwards, sufficiently long unmatched regions (>gapExtractLen parameter, see Table 1)

that overlap are merged together. Then, the merged unmatched regions are extracted, and the KIS is

broken at the corresponding points. This step results in a new refined table, referred to as KIS*.

The time complexity of this step is: O(N*M) (where N is the number of KISs and M is the maximum

number of gaps over all globally aligned KISs).

5. Extracting Breakpoints and Local Alignments: In Step 4 we have refined the KIS table by

validating the similarity of existing KISs. In this step, on the other hand, we try to extend the existing

table by adding new similarities to it. To do that, we extract all breakpoints from the KIS* table and

locally align them against the other genome (e.g., breakpoint regions extracted from the first genome

are locally aligned against the second genome and vice versa).

We have used YASS (Noe and Kucherov, NAR, 2005; see also http://bioinfo.lifl.fr/yass) for the local

alignments.

Extracting breakpoints time complexity: O(N) (where N is the number of KISs in the table KIS*).

6. Stitching Hits, Global Alignment, and Extracting Unmatched Regions: To calculate new

potential maximal similar segments, each set of local matches is scanned for hits that can be stitched

together. Stitched hits need to have the same orientation. To determine which hits to stitch, three

quantities are considered. The 1
st
 is the difference between the distances of the two hits in the two

organisms. Intuitively, the distance between two hits in a given organism is calculated by subtracting

the end of one hit from the start of the other. If the segments between the two hits are similar, the

distances between the two hits in the two organisms should be similar. Therefore, hits with an

excessive difference in their distances (> stitchDifference parameter, see Table1) are not stitched.

Second, we consider the distance between the two hits. If two segments in the two organisms are

similar, one would expect to find many hits when locally aligning them. Thus, the distance between

consecutive hits in similar segments should be short. Therefore, hits with too large a distance (>

stitchDistance parameter, see Table1) are not stitched. Finally, after stitching hits that fulfill the above

two requirements, we keep stitched segments that are long enough (> stitchMinLen parameter, see

Table1).

In order to validate the similarity of the stitched hits, we globally align them (using MAFFT) and

extract unmatched regions, and eventually add them to the KIS* table to get a new table of

comprehensive set of maximal similar segments between the two given genomes.

(We use SIS - stitched induced segments - as a prefix to label entries corresponding to stitched hits in

order to distinguish them from the KISs).

Time complexity: O(N^2) (where N is the number of hits).

Project - MAGIC - Preprocessing Phase

4

Parameter

Value

Used For

In

gapJoinLen

110bp

Joining close

gaps

gapExtractLen

200bp

Extracting long

unmatched

regions

Extracting

unmatched

regions from

global

alignments

(Step 4.)

stitchDifference

2000bp

Finding hits

having similar

distances

stitchDistance

15000bp

Finding close

hits

stitchMinLen

200bp

Removing short

stitched hits

Stitching hits

resulting from

local

alignments and

extracting long

ones (Step 6.)

Table 1

Project - MAGIC - Preprocessing Phase

5

Preprocessing Phase Formal Algorithmic Description

Step 1 (Calculating Unique Common Anchors)

Given two anchor tables, T1 and T2, PrePro scans both table entries and checks their correctness as

follows:

1. T1 and T2 should contain four columns (as described above in step 1).

2. All values in the “Orientation” column should equal either the character ‘+’ or the character ‘-‘.

3. All values in the “Start” and the “End” columns should equal a natural number – i.e., an integer

(no characters allowed).

4. All values in the “KO” column (which correspond to the labels of the segments) should have

“KO” as their prefix, followed by a natural number (no spaces between the “KO” and the

natural number are allowed).

5. Each KO should be unique in its file.

- “Cleaning” the tables:

The following procedure is applied to both T1 and T2:

Foreach entry і in T

 Set entry = extract(T(і))

 Check_it(entry) /*Checks the entry’s correctness according to the above*/

 end

Let T1* and T2* be the new “cleaned” tables.

Both of T1* and T2* are held in an instance of set<T> (C++ STL’s data structure) where T is an

instance of type SEQ (note that the set is sorted according to the KO labels).

For more information on SEQ see files seq.h and cleanfile.h.

See also “Software Design” section.

- Generating the intersection between T1* and T2*:

Finding the intersection between the two tables is done by applying the function “set_intersection”

from the “algorithm” library in the C++ STL package.

Both T1* and T2* tables are restricted to the result of the intersection, and are sorted according to the

“Start” field. We refer to the resulting tables as InterSec1 and InterSec2, respectively.

Project - MAGIC - Preprocessing Phase

6

Step 2 (Finding KISs)

Let і be an entry in the table InterSec1, which is sorted according to the first organism’s “Start”

column. In order to find і’s corresponding entry (i.e., the entry with the same KO label), say j, in the

table InterSec2 (which is sorted according to the second organism’s “Start” column), we map the

entry’s indices between the two tables using an array as follows:

0 0

1 1

2 2

n n

 0 1 . . . n

Figure 1

Denote by “des” the mapping array of the entry indices (see Fig. 1). Then, the corresponding index for

i (i.e., the index of the same entry when sorting the table according to the second organism) in

InterSec2 is given by des[i]. The “des” array is calculated as followed: For each index in the table

“InterSec1”, we search (using binary search) for its corresponding index in the table “InterSec2”. The

search is done based on the entry’s label (recall that the labels are unique).

The binary search is done on a third auxiliary table, sorted by the KO field (Each entry of this table

represents an entry of InterSec2 and its index in the table InterSec2).

The Time complexity of building the “des” array is O(NlogN) (where N is the number of entries in the

table “InterSec1”).

After calculating the “des” array, we are ready to identify the KISs. Finding the KISs is done

according to the following procedure:

0 2 1

+ 250 290 KO2

- 400 499 KO5

+ 576 600 KO3

- 2541 3999 KO12

- 20 62 KO2

+ 541 1999 KO12

+ 4000 4099 KO5

+ 5076 6010 KO3

Project - MAGIC - Preprocessing Phase

7

We say that two entries are successive in the first organism if they appear consecutively in table

InterSec1. We say that two entries are successive in the second organism either if they appear in an

incremental order in table InterSec2 and they share a similar orientation or they appear in a detrimental

order in table InterSec2 and they share a dissimilar orientation. A KIS corresponds to a maximal (with

respect to the containment order) group of entries that are successive in both the first and the second

organisms. Such a group of entries is also referred to as a run. To identify the runs, we scan the 1
st

table (InterSec1) incrementally, while identifying for each given entry its corresponding entry in the

2
nd
 table (InterSec2). When we identify two entries that are successive in both the first and the second

table, we join them into a single modified entry (with segments in both organisms that span the ranges

of the original two entries) and continue the scan with the newly generated one.

We refer to such entry as “KIS”.

Generating a KIS table is done with the format shown in the previous section.

Step 3 (Global Alignment of KISs)

In this step we do the following:

1. Scan the KIS table (the result of step 2) and extract the genomic segments corresponding to the

KISs.

2. If the KIS has a negative orientation, we reverse complement the 2
nd
 sequence (according to

the standard Watson-Crick pairing: A<=>T , G<=>C) .

3. Call on MAFFT’s global alignment function, and save the result of the alignment.

4. Go to 1 if there is still unaligned KISs.

5. Return the result of the global alignments of all KISs.

Step 4 (Extracting Unmatched Regions)

In order to extract unmatched regions, we search for proximal gaps in the global alignment results

from step 3. In addition, we refine the KIS table according to the extracted unmatched regions.

Extracting unmatched regions includes 6 steps:

1. Finding gaps in both organisms in a global alignment result of a given KIS.

2. Joining proximal gaps in each organism separately.

3. Extracting sufficiently long gaps.

4. Joining intersecting gaps found according to the first and second organism.

5. Transforming the gaps coordinates.

6. Refining the KIS table.

In the following, we describe each step in more detail.

Consider KISi, one of the KISs in the table. Let res1 and res2 be the results of the global alignment on

KISi in the first and second organisms, respectively.

1. To identify the gaps, we scan res1 and res2 and produce two tables - gaps1 and gaps2 - containing

the coordinates of the gaps in res1 and res2, respectively. Note that these coordinates are relative to

res1 and res2. Denote by n and m the number of rows in the tables gaps1 and gaps2, respectively.

Project - MAGIC - Preprocessing Phase

8

2. Joining proximal gaps is done on the gaps1 and gaps2 tables separately (in the following “gaps”

stands either for gaps1 or gaps2).

Set i = 1

while i < the number of rows in “gaps”

 if the distance between “gaps”[i] and “gaps”[i-1] <= gapJoinLen /*A predefined threshold*/

 start of i = start of i-1 /*Joining*/

remove “gaps”[i] from “gaps” /*Not relevant anymore*/

 endif

 Set i = i+1

 end

3. Here we extract sufficiently long gaps from the modified gaps1 and gaps2 tables.

Set i = 0

while i < the number of rows in “gaps”

if length of “gaps”[i] < gapExtractLen /*A predefined threshold*/

 remove “gaps”[i] from gaps

endif

 end

4. In order to find and join intersecting gaps inbetween the gaps1 and gaps2 tables, we first merge-sort

the two tables in an ascending order according to their start coordinate. (Note that both tables are

already sorted in an ascending order.) We refer to the merged table as “gaps”.

Let n be the number of rows in “gaps”.

 Set i = 1

 while i < n

 if end of “gaps” [i] <= end of “gaps” [i-1]

 start of “gaps” [i] = start of “gaps” [i-1] /*Unite between gaps*/

 end of “gaps” [i] = end of “gaps” [i-1]

 remove “gaps” [i-1] from “gaps”

 else

 if start of “gap” [i] <= end of “gaps” [i-1]

 start of “gaps” [i] = start of “gaps” [i-1] /*Unite between gaps*/

 remove “gaps” [i-1] from “gaps”

endif

Set i = i+1

 end

5. The coordinates of each gap in the resulting “gap” table are relative to the results of the global

alignment (res1 and res2). In order to get the coordinates (relative to the sequences with no dashes) we

apply the following algorithm:

Project - MAGIC - Preprocessing Phase

9

We use an auxiliary array of |res1| integers where each cell “i” is initialized with the number of dashes

found in the prefix of res1 (the prefix’s length is “i”).

We scan the gap table of res1 and for each entry (including the coordinates of the gaps) we reduce the

appropriate number of dashes.

The algorithm is demonstrated in the following procedure:

* Note that the procedure is invoked on both sequences gaps tables (res1 and res2, using res1 above is

for illustration only).

 Set i = 0

 while i < n /* n is the number of entries in the

 gaps table*/

start of “gaps” [i] = start of “gaps” [i] – “tmp” [i] /*We ignore the dashes and this

way we get the absolute value of

the coordinate*/

end of “gaps” [i] = end of “gaps” [i] – “tmp” [i]

if start of “gaps” [i] == end of “gaps” [i]

 don’t add this gap to gaps table

 endif

add this gap to gaps table

Set i = i+1

 end

6. After step 5 we have two refined tables of gaps:

1. gaps1

2. gaps2

Note that both tables have the same number of gaps because they have both been created from the

table gaps, which is the result of step 4.

Refining KISi is done as followed:

We scan the entries of both gaps tables and extract each gap of table “gaps1” out of the first sequence

of KISi and each gap of table “gaps2” out of the second sequence of KISi. This way we divide KISi

into new segments representing the KISi partitions.

Note that we take into consideration the orientation of KISi and divide it accordingly (if it was ‘+’ then

we divide both sequences of KISi as is, but if it’s ‘-‘ then we take into account the reverse complement

of the 2
nd
 sequence of KISi).

* If there are no gaps then we don’t divide KISi.

* After refining all the KISs in the KIS table we get a new table referred to as KIS*.

* In case that the orientation is ‘-‘ the refinement differs from the case when it’s ‘+’ and that’s because

of the transformation we’ve done on the 2nd sequence before performing global alignment

(see step 3).

 Figure 2 demonstrates and clarifies this point.

Project - MAGIC - Preprocessing Phase

10

Original sequence

A T C G T T T T G G T C A G T G T G T G

C A C A C A C T G A C C A A A A C G A T

The reverse complement sequence

Figure 2

Step 5 (Extracting BreakPoints and Local Alignment)

As a result of performing the 4
th
 step, we get a new and refined KIS table (KIS*).

In this step we locally align the breakpoints of KIS* against the whole genome taking into

consideration the circularity of both genomes (Figure 3 illustrates the breakpoints of KIS*).

The flow chart of this step is as followed:

1. Sort the KIS* table in an ascending order according to the “Start1” field of the table.

2. Extract the breakpoints of the 1st sequence from the 1st genome.

3. Sort the KIS* table in an ascending order according to the “Start2” field of the table.

4. Extract the breakpoints of the 2nd sequence from the 2nd genome.

5. Locally align the breakpoints of the 1st sequence against the 2nd genome.

6. Locally align the breakpoints of the 2
nd
 sequence against the 1

st
 genome.

* Note that as mentioned before, the local alignments are done using YASS.

* The table we get after the local alignment includes 5 fields:

 Label Start1 End1 Start2 End2 Orientation

GAP1

GAP1

Project - MAGIC - Preprocessing Phase

11

KIS1 4511 5211 3342 4100 +

KIS2 6100 6238 100 233 -

KISn-1 8244 8467 10000 10285 -

KISn 9288 3388 888 990 +

KIS12 5000 5043 56 90 -

KIS2 6100 6238 100 233 -

KISn-1 8244 8467 10000 10285 -

KIS82 102 768 11250 37 -

Figure 3

Sorted according to Start1

Sorted according to Start2

Breakpoint

5211-6100

Breakpoint

10285-11250

Project - MAGIC - Preprocessing Phase

12

Step 6 (Stitching Hits, Global Alignment and Extracting Unmatched Regions)

In this part we stitch local matches (the local alignment results from the previous step).

We scan the hits’ table and for each pair of hits “i” and “j” where i<j, we perform the following:

If their orientation differs then we move on to the next pair.

Else we calculate the distance between the sequences of hits “i” and “j” belonging to the first genome

(equals 0 if “j” overlaps “i”) and refer to it as l1.

If l1 is greater than stitchDistance (see Preprocessing phase – Description, part 6) then we move on to

the next pair.

Else we calculate the distance between the sequences of hit “i” and “j” belonging to the second

genome (equals 0 if “j” overlaps “i”) and refer to it as l2.

If the segments between the two hits are similar, the distances between the two hits in the two

organisms should be similar. Therefore if “i” and “j” have an excessive difference in their distances

(| l1 – l2 | > stitchDifference , see Table1) they won’t be stitched and we move on to the next pair.

Else we stitch “i” and “j” by uniting their coordinates and move on to the next pair.

Finally, after stitching hits, we keep stitched segments that are long enough (> stitchMinLen

parameter, see Table1).

In order to validate the similarity of the stitched hits, we globally align them (using MAFFT) and

extract unmatched regions, and eventually add them to the KIS* table to get a new table of

comprehensive set of maximal similar segments between the two given genomes.

(We use SIS - stitched induced segments - as a prefix to label entries corresponding to stitched hits in

order to distinguish them from the KISs.)

Note:

The following steps were added in order to avoid dealing with circularity issues:

1. Before calculating l1 and l2, we check if both hits are circular, and in case they are we add the

length of the appropriate genome to the ending coordinate of the suitable segment of the hit.

2. If the 2nd segment of hit “i” is circular and the distance between the 2nd segments of “i” and “j”

is less than stitchDistance then we add the length of the 2nd genome to the 2nd segment of hit

“j” in order to keep the same relation between the distance and the stitchDistance variable.

3. All previous steps are done taking into consideration the orientation of the hit.

Software description:

The application has two user interfaces:

1. command line.

2. MAGIC GUI .

- Following is a description of the parameters given as input to the application when running in the

command line interface:

* pre-pro [options] path1/file1.anchor path2/file2.anchor path3/

Optional parameters:

1. -help : Displays a Help screen.

Project - MAGIC - Preprocessing Phase

13

2. gJL <long> : Initializes gapJoinLen variable with <long> which is used for joining close gaps

(Default 110).

3. gEL <long> : Initializes gapExtractLen variable with <long> which is used for extracting long

unmatched regions (Default 200).

4. sDiff <long> : Initializes stitchDifference variable with <long> which is used for finding hits

having similar distances (Default 2000).

5. sDis <long> : Initializes stitchDistance variable with <long> which is used for finding close

hits (Default 15000).

6. sMin <long> : Initializes stitchMinLen variable with <long> which is used for removing short

stitched hits (Default 200).

7. -circular <0/1><0/1> : -circular 00 says that both genomes are not circular. (10-first genome is

circular,01-2nd genome is circular,11-both are circular, Default 00).

8. -eValue <real> : Determines the e-value threshold used for filtering local alignment hits. The

parameter is passed as is to YASS (Default 0.01).

Note:

PRE-PRO assumes the existence of the files including the whole genomes (file1.genome and

file2.genome) under path1 and path2 respectively.

The final result of PRE-PRO will be saved in the file path3/finalPREPRO.result .

Additional results will be also saved under path3 :

- KISs.res: The KIS* table.

- Intersection.res: The intersection result of KO’s.

- file1.anchor.clean: The “clean” result of the file file1.anchor.

- file2.anchor.clean: The “clean” result of the file file2.anchor.

- When the application is activated from MAGIC’s GUI, these parameters are set in the GUI (For

more information please refer to the GUI documentation at http://magicmapping.sourceforge.net).

Software design:

Diagram 1 describes the relationships between the main classes in the software (class diagram).

Following is a description of the main classes:

SEQ:

The main purpose of this class is to hold all relevant information on a certain sequence.

Main fields in SEQ class are:

• The sequence’s coordinates (start and end).

• The sequence’s orientation.

• The sequence’s KO.

KIS:

The main purpose of this class is to hold all relevant information on a certain KIS.

Main fields in KIS class are:

Project - MAGIC - Preprocessing Phase

14

• The KIS’s orientation.

• Two vectors of SEQ objects (the segments of both sequences of the KIS)

KISES

The main purpose of this class is to create the KIS table.

Main fields in KISES class are:

• The KIS table.

The KISES class is responsible on performing step 2 (see Preprocessing Phase - Description) .

lightKIS

The main purpose of this class is to hold all relevant information on a certain KIS or SIS.

Main fields in lightKIS class are:

• The coordinates of both sequences of the KIS/SIS.

• The orientation of the KIS/SIS.

• The name of the KIS/SIS.

CleanFile

The main purpose of this class is to legalize the given *.anchor files and provide new “clean” files

with relevant entries only.

Main fields in CleanFile class are:

• The path and name of the file *.anchor.

• A set of all legal entries (each entry is preserved in a SEQ object).

The CleanFile class is responsible in performing step 1 (see Preprocessing Phase - Description)

PREPRO

PREPRO is the main class which includes all major methods.

Main fields in PREPRO class are:

• Both paths and file names of both *.anchor files.

• Both genomes of the files *.genome .

The PREPRO class is responsible on performing steps 3-6 (see Preprocessing Phase - Description).

Software Dependencies

PrePro running time has a direct dependency with the running time of both MAFFT (Global alignment

method) and YASS (Local alignment method).

PrePro also depends on the functionality of the imported STL’s libraries and data structures which

were used in the implementation of the preprocessing phase.

Project - MAGIC - Preprocessing Phase

15

Future Work

Developing and improving PrePro would be expressed by parallelizing the independent calls for

MAFFT and YASS, this would result in a major improvement in the running time of PrePro.

Class Diagram

Diagram 1

Project - MAGIC - Preprocessing Phase

16

Flow Chart of The PreProcessing Phase

“Cleaning”

files and finding

intersection

Finding KISs

Global

Alignment On

KISs

Extracting

Unmatched

Regions

Extracting

BreakPoints and

Local Alignment

Stitching

Hits

Global

Alignment On

Hits

Extracting

Unmatched

Regions

