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Introduction 

 

MAGIC, (a rearrangement of an Integrative and Accurate method for Comparative 

Genome Mapping) is a tool for comparing two genomes (Swidan et. al., PLoS CB, 2006). It consists 

of two phases: A preprocessing phase for identifying maximal similar segments, and a mapping phase 

for clustering and classifying these segments. MAGIC's main novelty lies in its biologically intuitive 

clustering approach, which aims towards both calculating reorder-free segments and identifying 

orthologous segments. MAGIC also handles nuisance cross overlaps resulting from duplications that 

occurred before the speciation of the considered organisms from their most recent common ancestor.  

MAGIC is both robust and scalable: The former is asserted with respect to its initial input and with 

respect to its parameters' values. The latter enables applying MAGIC to distantly related organisms 

and to large genomes. 

MAGICs improvements allow a comprehensive study of the diversity of genetic repertoires resulting 

from large-scale mutations, such as, indels and duplications, including explicitly transposable and 

phagic elements. MAGIC enables to conduct a comprehensive analysis of the different forces shaping 

genomes from different clades, and to quantify the importance of novel gene content introduced by 

horizontal gene transfer relative to gene duplication in genome evolution. 

MAGIC’s result can be used as well to investigate the breakpoint distribution in genomes. 

 

In this document we describe a C/C++ implementation of the first phase of MAGIC, i.e., the 

preprocessing phase (PrePro). For more details on MAGIC we refer the reader to (Swidan et. al., PLoS 

CB, 2006). 

 

 

Preprocessing Phase  - Description  

 

The input to the preprocessing phase constitutes two anchor files containing labeling of genomic 

segments of interest - which we refer to as KOs - in the two organisms, as well as two files containing 

the genomic sequence of the organisms (in the meanwhile MAGIC can handle only unichromosomal 

genomes). The output of the preprocessing phase is a comprehensive table of all maximal similar 

segments between the two genomes. Manipulating the input files to calculate the comprehensive table 

is done in six steps. We first give a verbal description of these steps, and then provide a detailed 

formal algorithmic description: 

 

1. Calculating Unique Common Anchors: The input anchor files (named *.anchor) contain tab-

delimited tables with the following columns “Orientation Start End KO”. The  

“Orientation” column describes the strandedness of the segment (and equals “+” or “-“), the “Start” 

(“End”) refers to the starting (ending) coordinate in the genomic sequence (and equals to a natural 

number or an integer), and the KO column contains the label of the entry (i.e., a general string). In this 

step, we seek to find the unique common anchors between these two files. The files, however, may  
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contain illegal entries. Hence, we first scan the files, remove these illegal entries, and output a new 

clean anchor file (named *.anchor.clean). 

Examples of Illegal entries: 

 

+ 12312hhsh 12123333 KO327 

A 12121  123121 KO2311 

- 983738 9918281 OK122 

 

To calculate the unique common anchors, we are assisted by the standard template library (STL) to use 

data structures preserving the uniqueness quality of their objects (in our case, anchors’ labels).  

The output of this part is saved by default in a file (Intersection.res).  

The time complexity of this step is O(N*logN) (where N is the number of legal entries). 

 

2. Calculating KO Induced Segments (KISs): Based on the common unique anchors, one can 

calculate a coarse mapping between the two genomes by generating runs of successive anchors (with 

identical orientation). To do that, we search for maximal anchor runs (based on the result of Step 1). 

We refer to the resulting segments as KO induced segments (KISs). 

By default, the program generates a file (KISs.res) containing the final result. This file has the 

following format: 

KISi Start1 End1 Start2 End2 Orientation 

 

KISi: A unique name for the KIS. 

Start1: The starting coordinate of the entry in the first genome. 

End1: The ending coordinate of the entry in the first genome. 

Start2: The starting coordinate of the entry in the second genome. 

End2: The ending coordinate of the entry in the second genome. 

Orientation: The relative orientation of the KOs assembling the KIS between the two genomes (note 

that orientation here differs from the one given in the anchor files). 

The time complexity of this step is O(N*logN) (N is the number of KOs). 

 

 

3. Global Alignment on KISs: The KISs produced in Step 2 represent a coarse mapping. To verify 

the similarity of the segments in the KIS table, we globally align them. Since the genomic segments 

might be very long, exact global alignment methods cannot be used. Instead, we use MAFFT (Katoh 

et. al. , NAR, 2005; see also http://www.biophys.kyoto-u.ac.jp/~katoh/programs/align/mafft/) , a fast 

heuristic (with moderate memory requirements) for the global alignment.  

MAFFT’s time complexity: 

MAFFT requires CPU time effectively proportional to the
 
average sequence length L for amino acid or 

nucleotide sequence alignments consisting homologues of a single gene. 

Both memory and time complexities of MAFFT are O(L) (Katoh et. al. , NAR, 2005). 

 

4. Extracting Unmatched Regions: To refine the coarse KIS mapping, we search for unmatched 

regions in the results of the global alignments performed in Step 3. The unmatched regions are either 

segments that have undergone reordering (and thus disturb the collinear global alignment) or indels. 

To distinguish between the two cases, we search the other genome for hits based on these regions (in 

Step 5). If hits are found, the unmatched regions might result from reordering mutations (this is 

determined in the mapping phase), or otherwise they are most likely indels. The unmatched regions are  
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constructed by joining close gaps in each of the two genomes separately (< gapJoinLen parameter, see 

Table 1). Afterwards, sufficiently long unmatched regions (>gapExtractLen parameter, see Table 1) 

that overlap are merged together. Then, the merged unmatched regions are extracted, and the KIS is 

broken at the corresponding points. This step results in a new refined table, referred to as KIS*.  

The time complexity of this step is: O(N*M) (where N is the number of KISs and M is the maximum 

number of gaps over all globally aligned KISs). 

 

5. Extracting Breakpoints and Local Alignments: In Step 4 we have refined the KIS table by 

validating the similarity of existing KISs. In this step, on the other hand, we try to extend the existing 

table by adding new similarities to it. To do that, we extract all breakpoints from the KIS* table and 

locally align them against the other genome (e.g., breakpoint regions extracted from the first genome 

are locally aligned against the second genome and vice versa). 

We have used YASS (Noe and Kucherov, NAR, 2005; see also http://bioinfo.lifl.fr/yass) for the local 

alignments.  

Extracting breakpoints time complexity: O(N) (where N is the number of KISs in the table KIS*). 

 

6. Stitching Hits, Global Alignment, and Extracting Unmatched Regions: To calculate new 

potential maximal similar segments, each set of local matches is scanned for hits that can be stitched 

together. Stitched hits need to have the same orientation. To determine which hits to stitch, three 

quantities are considered. The 1
st
 is the difference between the distances of the two hits in the two 

organisms. Intuitively, the distance between two hits in a given organism is calculated by subtracting 

the end of one hit from the start of the other. If the segments between the two hits are similar, the 

distances between the two hits in the two organisms should be similar. Therefore, hits with an 

excessive difference in their distances (> stitchDifference parameter, see Table1) are not stitched. 

Second, we consider the distance between the two hits. If two segments in the two organisms are 

similar, one would expect to find many hits when locally aligning them. Thus, the distance between 

consecutive hits in similar segments should be short. Therefore, hits with too large a distance (> 

stitchDistance parameter, see Table1) are not stitched. Finally, after stitching hits that fulfill the above 

two requirements, we keep stitched segments that are long enough (> stitchMinLen parameter, see 

Table1). 

In order to validate the similarity of the stitched hits, we globally align them (using MAFFT) and 

extract unmatched regions, and eventually add them to the KIS* table to get a new table of 

comprehensive set of maximal similar segments between the two given genomes. 

(We use SIS - stitched induced segments - as a prefix to label entries corresponding to stitched hits in 

order to distinguish them from the KISs). 

Time complexity: O(N^2) (where N is the number of hits). 
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Parameter 
 

Value 
 

Used For 
 

In 

 

 

gapJoinLen 

 

 

110bp 

 

Joining close 

gaps  
 

 

 

gapExtractLen 
 

 

 

 

200bp 
 

 

 

Extracting long 

unmatched 

regions 

 

Extracting 

unmatched 

regions from 

global 

alignments  

(Step 4.) 
 

 

 

 

stitchDifference 
 

 

 

 

2000bp 
 

 

 

Finding hits 

having similar 

distances 
 

 

 

stitchDistance 
 

 

 

15000bp 
 

 

 

Finding close 

hits 
 

 

stitchMinLen 

 

200bp 

 

Removing short 

stitched hits 

 

 

 

 

Stitching hits 

resulting from 

local 

alignments and 

extracting long 

ones (Step 6.) 
 

 

 

 
Table 1 
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Preprocessing Phase Formal Algorithmic Description  

 

 

Step 1 (Calculating Unique Common Anchors) 

 

Given two anchor tables, T1 and T2, PrePro scans both table entries and checks their correctness as 

follows:  

 

1. T1 and T2 should contain four columns (as described above in step 1). 

 

2. All values in the “Orientation” column should equal either the character ‘+’ or the character ‘-‘. 

 

3. All values in the “Start” and the “End” columns should equal a natural number – i.e., an integer 

(no characters allowed). 

 

4. All values in the “KO” column (which correspond to the labels of the segments) should have 

“KO” as their prefix, followed by a natural number (no spaces between the “KO” and the 

natural number are allowed). 

 

5. Each KO should be unique in its file. 

 

 

- “Cleaning” the tables: 

 

The following procedure is applied to both T1 and T2: 

 

Foreach entry і in T 

  Set entry = extract( T( і ) )    

  Check_it(entry)  /*Checks the entry’s correctness according to the above*/ 

 end 

 

Let T1* and T2* be the new “cleaned” tables. 

Both of T1* and T2* are held in an instance of set<T> (C++ STL’s data structure) where T is an 

instance of type SEQ  (note that the set is sorted according to the KO labels). 

For more information on SEQ see files seq.h and cleanfile.h. 

See also “Software Design” section.  

 

- Generating the intersection between T1* and T2*: 

 

Finding the intersection between the two tables is done by applying the function “set_intersection” 

from the “algorithm” library in the C++ STL package. 

Both T1* and T2* tables are restricted to the result of the intersection, and are sorted according to the 

“Start” field. We refer to the resulting tables as InterSec1 and InterSec2, respectively. 
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Step 2 (Finding KISs) 

 

Let і be an entry in the table InterSec1, which is sorted according to the first organism’s “Start” 

column. In order to find і’s corresponding entry (i.e., the entry with the same KO label), say j, in the 

table InterSec2 (which is sorted according to the second organism’s “Start” column), we map the 

entry’s indices between the two tables using an array as follows: 

      

 

 

                             
 

        
0        0 

1        1 

2        2 

 

 

 

 

n        n 

        

 

 

              0    1                  . . .              n 

             

 

    

        

 
       

Figure 1 

 

 

 

Denote by “des” the mapping array of the entry indices (see Fig. 1). Then, the corresponding index for 

i (i.e., the index of the same entry when sorting the table according to the second organism) in 

InterSec2 is given by des[i]. The “des” array is calculated as followed: For each index in the table 

“InterSec1”, we search (using binary search) for its corresponding index in the table “InterSec2”. The 

search is done based on the entry’s label (recall that the labels are unique). 

The binary search is done on a third auxiliary table, sorted by the KO field (Each entry of this table 

represents an entry of InterSec2 and its index in the table InterSec2). 

The Time complexity of building the “des” array is O(NlogN) (where N is the number of entries in the 

table “InterSec1”). 

 

After calculating the “des” array, we are ready to identify the KISs. Finding the KISs is done 

according to the following procedure: 

 

0 2   1 

+ 250 290 KO2 

- 400 499 KO5 

+ 576 600 KO3 

    

- 2541 3999 KO12 

- 20 62 KO2 

+ 541 1999 KO12 

+ 4000 4099 KO5 

    

+ 5076 6010 KO3 
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We say that two entries are successive in the first organism if they appear consecutively in table 

InterSec1. We say that two entries are successive in the second organism either if they appear in an 

incremental order in table InterSec2 and they share a similar orientation or they appear in a detrimental 

order in table InterSec2 and they share a dissimilar orientation. A KIS corresponds to a maximal (with 

respect to the containment order) group of entries that are successive in both the first and the second 

organisms. Such a group of entries is also referred to as a run. To identify the runs, we scan the 1
st
 

table (InterSec1) incrementally, while identifying for each given entry its corresponding entry in the 

2
nd
 table (InterSec2). When we identify two entries that are successive in both the first and the second 

table, we join them into a single modified entry (with segments in both organisms that span the ranges 

of the original two entries) and continue the scan with the newly generated one.  

We refer to such entry as “KIS”. 

Generating a KIS table is done with the format shown in the previous section. 

 

Step 3 (Global Alignment of KISs) 

 

In this step we do the following: 

1. Scan the KIS table (the result of step 2) and extract the genomic segments corresponding to the 

KISs. 

2. If the KIS has a negative orientation, we reverse complement the 2
nd
 sequence (according to 

the standard Watson-Crick pairing: A<=>T , G<=>C) . 

3. Call on MAFFT’s global alignment function, and save the result of the alignment. 

4. Go to 1 if there is still unaligned KISs. 

5. Return the result of the global alignments of all KISs. 

 

Step 4 (Extracting Unmatched Regions) 

 

In order to extract unmatched regions, we search for proximal gaps in the global alignment results 

from step 3. In addition, we refine the KIS table according to the extracted unmatched regions. 

 

Extracting unmatched regions includes 6 steps: 

1. Finding gaps in both organisms in a global alignment result of a given KIS. 

2. Joining proximal gaps in each organism separately. 

3. Extracting sufficiently long gaps. 

4. Joining intersecting gaps found according to the first and second organism. 

5. Transforming the gaps coordinates. 

6. Refining the KIS table. 

 

In the following, we describe each step in more detail. 

Consider KISi, one of the KISs in the table. Let res1 and res2 be the results of the global alignment on 

KISi in the first and second organisms, respectively.  

 

 

 

1. To identify the gaps, we scan res1 and res2 and produce two tables - gaps1 and gaps2 - containing 

the coordinates of the gaps in res1 and res2, respectively. Note that these coordinates are relative to 

res1 and res2. Denote by n and m the number of rows in the tables gaps1 and gaps2, respectively. 
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2. Joining proximal gaps is done on the gaps1 and gaps2 tables separately (in the following “gaps” 

stands either for gaps1 or gaps2). 

 

Set i = 1 

 

while i < the number of rows  in “gaps”  

    if the distance between “gaps”[i] and “gaps”[i-1] <= gapJoinLen  /*A predefined threshold*/ 

   start of i = start of i-1      /*Joining*/ 

remove “gaps”[i] from “gaps”     /*Not relevant anymore*/ 

  endif  

  Set i = i+1 

 end 

 

3. Here we extract sufficiently long gaps from the modified gaps1 and gaps2 tables. 

Set i = 0 

  

while i < the number of rows  in “gaps”  

if length of “gaps”[i] < gapExtractLen  /*A predefined threshold*/ 

 remove “gaps”[i] from gaps 

endif 

 end 

 

4. In order to find and join intersecting gaps inbetween the gaps1 and gaps2 tables, we first merge-sort 

the two tables in an ascending order according to their start coordinate. (Note that both tables are 

already sorted in an ascending order.) We refer to the merged table as “gaps”.  

 

Let n be the number of rows in “gaps”. 

 

 

 Set i = 1 

 while i < n 

  if end of “gaps” [i] <= end of “gaps” [i-1]  

   start of “gaps” [i] = start of “gaps” [i-1]  /*Unite between gaps*/ 

   end of “gaps” [i] = end of “gaps” [i-1] 

   remove “gaps” [i-1] from “gaps” 

  else 

   if start of “gap” [i] <= end of “gaps” [i-1] 

    start of “gaps” [i] = start of “gaps” [i-1] /*Unite between gaps*/ 

    remove “gaps” [i-1] from “gaps” 

endif 

Set i = i+1 

 end 

 

 

5. The coordinates of each gap in the resulting “gap” table are relative to the results of the global 

alignment (res1 and res2). In order to get the coordinates (relative to the sequences with no dashes) we 

apply the following algorithm: 
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We use an auxiliary array of |res1| integers where each cell “i” is initialized with the number of dashes 

found in the prefix of res1 (the prefix’s length is “i”). 

We scan the gap table of res1 and for each entry (including the coordinates of the gaps) we reduce the 

appropriate number of dashes. 

The algorithm is demonstrated in the following procedure:  

* Note that the procedure is invoked on both sequences gaps tables (res1 and res2, using res1 above is 

for illustration only). 

 

 Set i = 0 

 while i < n       /* n is the number of entries in the 

 gaps table*/ 

start of “gaps” [i] = start of “gaps” [i] – “tmp” [i] /*We ignore the dashes and this 

way we get the absolute value of 

the coordinate*/ 

end of “gaps” [i] = end of “gaps” [i] – “tmp” [i] 

if start of “gaps” [i] == end of “gaps” [i]  

   don’t add this gap to gaps table 

  endif 

add this gap to gaps table 

Set i = i+1 

 end 

 

6. After step 5 we have two refined tables of gaps: 

1. gaps1  

2. gaps2 

Note that both tables have the same number of gaps because they have both been created from the 

table gaps, which is the result of step 4. 

 

Refining KISi is done as followed:  

 

We scan the entries of both gaps tables and extract each gap of table “gaps1” out of the first sequence 

of KISi and each gap of table “gaps2” out of the second sequence of KISi. This way we divide KISi 

into new segments representing the KISi partitions. 

Note that we take into consideration the orientation of KISi and divide it accordingly (if it was ‘+’ then 

we divide both sequences of KISi as is, but if it’s ‘-‘ then we take into account the reverse complement 

of the 2
nd
 sequence of KISi). 

 

* If there are no gaps then we don’t divide KISi. 

* After refining all the KISs in the KIS table we get a new table referred to as KIS*. 

* In case that the orientation is ‘-‘ the refinement differs from the case when it’s ‘+’ and that’s because  

of the transformation we’ve done on  the 2nd sequence before performing global alignment  

(see step 3). 

   Figure 2 demonstrates and clarifies this point. 
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Original sequence 
          

 

A T C G T T T T G G  . . . . . .  T C A G T G T G T G 

    

   

 

   

  

 

C A C A C A C T G A . . . . . .  C C A A A A C G A T 

 

 

The reverse complement sequence 

 
Figure 2 

 

 

 

 

Step 5 (Extracting BreakPoints and Local Alignment) 

 

As a result of performing the 4
th
 step, we get a new and refined KIS table (KIS*). 

In this step we locally align the breakpoints of KIS* against the whole genome taking into 

consideration the circularity of both genomes (Figure 3 illustrates the breakpoints of KIS*). 

 

The flow chart of this step is as followed: 

 

1. Sort the KIS* table in an ascending order according to the “Start1” field of the table. 

2. Extract the breakpoints of the 1st sequence from the 1st genome. 

3. Sort the KIS* table in an ascending order according to the “Start2” field of the table. 

4. Extract the breakpoints of the 2nd sequence from the 2nd genome. 

5. Locally align the breakpoints of the 1st sequence against the 2nd genome. 

6. Locally align the breakpoints of the 2
nd
 sequence against the 1

st
 genome. 

 

* Note that as mentioned before, the local alignments are done using YASS.  

* The table we get after the local alignment includes 5 fields: 

   Label Start1 End1 Start2 End2 Orientation 

 

 

 

 

 

 

 

 

GAP1 

GAP1 
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KIS1 4511 5211 3342 4100 + 

KIS2 6100 6238 100 233 - 

      

KISn-1 8244 8467 10000 10285 - 

KISn 9288 3388 888 990 + 

       

 

 

                           
KIS12 5000 5043 56 90 - 

KIS2 6100 6238 100 233 - 

      

KISn-1 8244 8467 10000 10285 - 

KIS82 102 768 11250 37 - 

 

 

 

 

 
Figure 3 

 

 

 

 

 

 

Sorted according to Start1 

Sorted according to Start2 

Breakpoint 

5211-6100 

Breakpoint 

10285-11250 
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Step 6 (Stitching Hits, Global Alignment and Extracting Unmatched Regions)  

 

In this part we stitch local matches (the local alignment results from the previous step). 

We scan the hits’ table and for each pair of hits “i” and “j” where i<j, we perform the following:  

If their orientation differs then we move on to the next pair. 

Else we calculate the distance between the sequences of hits “i” and “j” belonging to the first genome 

(equals 0 if “j” overlaps “i”) and refer to it as l1. 

If l1 is greater than stitchDistance (see Preprocessing phase – Description, part 6) then we move on to 

the next pair. 

Else we calculate the distance between the sequences of hit “i” and “j” belonging to the second 

genome (equals 0 if “j” overlaps “i”) and refer to it as l2. 

If the segments between the two hits are similar, the distances between the two hits in the two 

organisms should be similar. Therefore if “i” and “j” have an excessive difference in their distances       

(  | l1 – l2 |  > stitchDifference , see Table1) they won’t be stitched and we move on to the next pair. 

Else we stitch “i” and “j” by uniting their coordinates and move on to the next pair. 

Finally, after stitching hits, we keep stitched segments that are long enough (> stitchMinLen 

parameter, see Table1). 

In order to validate the similarity of the stitched hits, we globally align them (using MAFFT) and 

extract unmatched regions, and eventually add them to the KIS* table to get a new table of 

comprehensive set of maximal similar segments between the two given genomes. 

(We use SIS - stitched induced segments - as a prefix to label entries corresponding to stitched hits in 

order to distinguish them from the KISs.) 

 

Note: 

The following steps were added in order to avoid dealing with circularity issues: 

1. Before calculating l1 and l2, we check if both hits are circular, and in case they are we add the 

length of the appropriate genome to the ending coordinate of the suitable segment of the hit. 

2. If the 2nd segment of hit “i” is circular and the distance between the 2nd segments of “i” and “j” 

is less than stitchDistance then we add the length of the 2nd genome to the 2nd segment of hit 

“j” in order to keep the same relation between the distance and the stitchDistance variable. 

3. All previous steps are done taking into consideration the orientation of the hit. 

 

 

Software description: 

 

The application has two user interfaces:  

1. command line. 

2. MAGIC GUI . 

 

- Following is a description of the parameters given as input to the application when running in the 

command line interface: 

 

* pre-pro [options] path1/file1.anchor path2/file2.anchor path3/ 

 

Optional parameters:  

1. -help : Displays a Help screen. 
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2. gJL <long> : Initializes gapJoinLen variable with <long> which is used for joining close gaps 

(Default 110). 

3. gEL <long> : Initializes gapExtractLen variable with <long> which is used for extracting long 

unmatched regions (Default 200). 

4. sDiff <long> : Initializes stitchDifference variable with <long> which is used for finding hits 

having similar distances (Default 2000). 

5. sDis <long> : Initializes stitchDistance variable with <long> which is used for finding close 

hits (Default 15000). 

6. sMin <long> : Initializes stitchMinLen variable with <long> which is used for removing short 

stitched hits (Default 200). 

7. -circular <0/1><0/1> : -circular 00 says that both genomes are not circular. (10-first genome is 

circular,01-2nd genome is circular,11-both are circular, Default 00). 

8. -eValue <real> : Determines the e-value threshold used for filtering local alignment hits. The 

parameter is passed as is to YASS (Default 0.01). 

   

Note:  

PRE-PRO assumes the existence of the files including the whole genomes (file1.genome and 

file2.genome) under path1 and path2 respectively. 

The final result of PRE-PRO will be saved in the file path3/finalPREPRO.result . 

Additional results will be also saved under path3 : 

- KISs.res: The KIS* table. 

- Intersection.res: The intersection result of KO’s. 

- file1.anchor.clean: The “clean” result of the file file1.anchor. 

- file2.anchor.clean: The “clean” result of the file file2.anchor. 

 

- When the application is activated from MAGIC’s GUI, these parameters are set in the GUI (For 

more information please refer to the GUI documentation at http://magicmapping.sourceforge.net). 

 

 

 

Software design: 
 

Diagram 1 describes the relationships between the main classes in the software (class diagram). 

 

Following is a description of the main classes:  

 

SEQ: 

The main purpose of this class is to hold all relevant information on a certain sequence. 

Main fields in SEQ class are: 

• The sequence’s coordinates (start and end). 

• The sequence’s orientation. 

• The sequence’s KO. 

 

KIS: 

The main purpose of this class is to hold all relevant information on a certain KIS. 

Main fields in KIS class are: 
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• The KIS’s orientation. 

• Two vectors of SEQ objects (the segments of both sequences of the KIS) 
 

KISES 

The main purpose of this class is to create the KIS table. 

Main fields in KISES class are: 

• The KIS table. 

 

The KISES class is responsible on performing step 2 (see Preprocessing Phase  - Description) . 

 

lightKIS 

The main purpose of this class is to hold all relevant information on a certain KIS or SIS. 

Main fields in lightKIS class are: 

• The coordinates of both sequences of the KIS/SIS. 

• The orientation of the KIS/SIS. 

• The name of the KIS/SIS. 

 

CleanFile 

The main purpose of this class is to legalize the given *.anchor files and provide new “clean” files 

with relevant entries only. 

Main fields in CleanFile class are: 

• The path and name of the file *.anchor. 

• A set of all legal entries (each entry is preserved in a SEQ object). 

 

The CleanFile class is responsible in performing step 1 (see Preprocessing Phase  - Description) 

 

PREPRO 

PREPRO is the main class which includes all major methods. 

Main fields in PREPRO class are: 

• Both paths and file names of both *.anchor files. 

• Both genomes of the files *.genome . 

 

The PREPRO class is responsible on performing steps 3-6 (see Preprocessing Phase  - Description). 

 

 

Software Dependencies 

 

PrePro running time has a direct dependency with the running time of both MAFFT (Global alignment 

method) and YASS (Local alignment method). 

PrePro also depends on the functionality of the imported STL’s libraries and data structures which 

were used in the implementation of the preprocessing phase. 
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Future Work 

 

Developing and improving PrePro would be expressed by parallelizing the independent calls for 

MAFFT and YASS, this would result in a major improvement in the running time of PrePro. 

 

 

 

 

Class Diagram 

 

 

 

 
 

 
Diagram 1 
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Flow Chart of The PreProcessing Phase 
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