
On the Repeat-Annotated Phylogenetic Tree

Reconstruction Problem

Firas Swidan∗† Michal Ziv-Ukelson ∗‡ Ron Y. Pinter ∗

August 4, 2006

Contact author:

Firas Swidan
Department of Computer Science
Taub 434
Technion – Israel Institute of Technology
Haifa 32000
Israel
Email: firas@cs.technion.ac.il
Tel: +972 4 829 4930
Fax: +972 4 829 3900

Keywords: Phylogenetic inference, genome rearrangements, repmaps, set-tries.

∗Department of Computer Science, Technion – Israel Institute of Technology, Haifa 32000, Israel.
Email: {firas,michalz,pinter}@cs.technion.ac.il.

†Current address: Janelia Farm Research Center, Howard Hughes Medical Institute, 19700 Helix Drive,
Ashburn, Virginia 20147, USA. Email: swidanf@janelia.hhmi.org.

‡Current address: School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.
Email: michaluz@post.tau.ac.il.

1

Abstract. A new problem in phylogenetic inference is presented, based on recent biologi-

cal findings indicating a strong association between reversals (aka inversions) and repeats.

These biological findings are formalized here in a new mathematical model, called repeat-

annotated phylogenetic trees (RAPT). We show that, under RAPT, the evolutionary process

— including both the tree-topology as well as internal node genome orders — is uniquely

determined, a property that is of major significance both in theory and in practice. Further-

more, the repeats are employed to provide linear-time algorithms for reconstructing both the

genomic orders and the phylogeny, which are NP-hard problems under the classical model

of sorting by reversals (SBR).

2

1 Introduction

Phylogenetic inference and ancestral genome order reconstruction are important problems in

evolutionary, genetic, and bioinformatic studies [Sankoff, 2003,Bourque et al., 2005] . In these

problems one seeks to reconstruct the phylogeny of a given set of organisms as well as the

genomic order (i.e., the order of the genomic segments) of their ancestors; see for example

Figures 1a and 1c. Here, a one-to-one mapping of the orthologous segments of the two

strains Xanthomonas campestris pathovar campestris ATCC 33913 (X. campestris) [da Silva

et al., 2002] and 8004 (X. campestris 8004) [Qian et al., 2005] is presented schematically.

These bacteria cause black rot disease in crucifers such as Brassica (cabbage) and Arabidopsis

(mustard), which results in severe losses in agricultural yield world-wide [da Silva et al., 2002]

. This figure suggests that 3 reversals have affected the two bacteria since their divergence.

However, during the speciation of which of the two bacteria have these reversals occurred

and what is the ancestral genomic order? Figure 1

Using current methods, reconstructing ancestral genomic order involves solving a multiple

sorting by reversals (SBR) problem. In SBR, which has been thoroughly examined over

the last two decades [Watterson et al., 1982,Kececioglu and Sankoff, 1993,Kececioglu and

Sankoff, 1994, Bafna and Pevzner, 1996, Berman and Hannenhali, 1996, Chen and Skiena,

1996,Kaplan et al., 1997,Bafna and Pevzner, 1998,Hannenhalli and Pevzner, 1999,Gu et al.,

1999, Bader et al., 2001, Christie and Irving, 2001, Bergeron et al., 2002, Hartman, 2003,

Hartman and Sharan, 2004, Bergeron et al., 2004, Tannier and Sagot, 2004, Bender et al.,

2004,Swidan et al., 2004,Bergeron et al., 2005,Bergeron, 2005], one represents the one-to-one

orthologous mappings as permutations and the inversion mutations as reversal operations.

The goal of the SBR optimization problem is to find a phylogeny and corresponding reversal

scenarios along its branches with the minimum number of reversals. In SBR, however,

the ancestral genomic order cannot be implied based solely on the comparison of a pair

3

of genomes, as is needed for the bacteria pair in Figure 1a. Moreover, adding one more

organism to enable the deduction of the ancestral order (in which case the problem is known

as the median problem [Sankoff and Blanchette, 1998])makes this task NP-hard [Caprara,

1999]. Nonetheless, this problem was addressed by both exhaustive search and heuristic

techniques [Moret et al., 2001,Bourque and Pevzner, 2002].

The ancestral genome order reconstruction problem described above extends to recon-

structing large phylogenetic trees over multiple input leaves (including or excluding the re-

covery of genomic order in internal nodes). Current phylogenetic inference methods, based on

different biological evidence ranging from phenotypic morphologies to various genotypic mu-

tations — including point mutations (distance-based, maximum-likelihood, and parsimony

approaches), gene insertions and deletions (the Dollo parsimony approach), and genome

rearrangements (distance-based and parsimony approaches) — are computationally hard.

Moreover, current approaches often yield many alternative solutions; choosing the most

sound phylogeny among them has very important biological consequences, but is yet a very

challenging task [Martin et al., 2002,Wolf et al., 2001,Brocchieri, 2001] .

In this paper we investigate a new approach to phylogenetic inference and ancestral

genome order reconstruction. The new approach is inspired by a recent biological discov-

ery regarding the role of repeats, i.e., short genomic sequences that are highly similar to

each other, in inducing reversals (or recombinations in general). Several studies indicate a

strong association between repeats and recombination events [Rocha, 2004,Rocha, 2003b,Ac-

haz et al., 2003, Rocha, 2003a, Rocha et al., 1999]. As reviewed in [Bzymek and Lovett,

2001, Kowalczykowski et al., 1994] , repeats cause rearrangements, either by a mechanism

of illegitimate recombination [Smith, 1989], or by a mechanism of homologous recombina-

tion [Rothstein et al., 2000, Lusetti and Cox, 2002] (see Figure 2 for an illustration of this

phenomenon). Moreover, these findings demonstrate that most of the repeats engaged in re-

versals correspond to mobile DNA elements, i.e., regions of DNA that selfishly duplicate and

4

move into new sites [Mahillon and Chandler, 1998]. Hence, these repeats are usually found

only in the organism affected by the reversals; see, e.g., [Parkhill et al., 2003] . This new and

important information regarding the repeats became accessible recently with the availability

of many sequenced genomes and its automatic generation is made possible by the develop-

ment of accurate comparative genome mapping methods, see, e.g., [Swidan et al., 2006,Qian

et al., 2005]. The new data motivates the enhancement of previous phylogenetic models with

additional information in the form of repeat “footprints”, in order to make their predictions

more realistic and increase their potential for producing biologically relevant insights. Figure 2

Qian et al. (2005) demonstrate an initial utilization of repeats in the task of ancestral

genome order reconstruction of the Xanthomonas campestris bacteria. They have identified

two identical IS1478-related insertion sequences (corresponding to the repeat pair −b, b in

Figure 1b) spanning a putative recombination site. Moreover, they predicted a rearrange-

ment scenario for transforming one genome to the other — see http://www.genome.org/

content/vol0/issue2005/images/data/gr.3378705/DC1/SI Fig 2.gif for a detailed (and

vivid) animation of their prediction. We continue their analysis by applying our approach

to the very same data: in Figures 1b and 1d we incorporate the information regarding the

repeats into the mapping. In addition to the repeat pair reported by Qian et al., we iden-

tify two more pairs spanning two putative recombination sites. According to the repeats,

one inversion occurred during the speciation of X. campestris, while two inversions occurred

during the speciation of X. campestris 8004. Given this information, deducing the ancestral

genomic order is straightforward, as shown in Figure 1d.

The above example demonstrates how repeats can be utilized to uniquely determine the

order of the ancestral genomic segments — based solely on pairwise genomic comparisons.

Furthermore, it shows that the “repeat footprints” aid in the efficient computation of ances-

tral genomic orders. To generalize these observations, in Section 2 we formalize the biological

assumptions introduced above into a theoretical evolutionary model. In Section 3 we study

5

the pairwise case and present two important results: uniqueness of the solutions and sim-

plification of the computation. In Section 4 we show that these two results scale up to the

more general case of multiple genomes. For a formal overview of the combinatorial results

of this paper we refer the reader to Section 2.1.

6

2 A Formal Model Based on Repeats

The model described in this paper is based on the following biological assumptions:

1. Reversals are usually induced by inverted repeat pairs, i.e., repeats having opposite

orientations [Kowalczykowski et al., 1994,Bzymek and Lovett, 2001] .

2. Repeats engaged in reversals — corresponding mostly to mobile DNA elements — are

easily identified on the borders of reversed genomic segments, and are present only in

the affected organism [Kowalczykowski et al., 1994, Parkhill et al., 2003, Qian et al.,

2005].

3. The information mapping each repeat to its pair-mate is part of the input1.

4. Each repeat has a very low probability for causing a reversal that remains fixed in the

population [Hughes, 2000, Swidan et al., 2006] . Therefore, in our model we assume

that each repeat causes up to one reversal.

Note that though the above assumptions may not capture the great variety found in real

biological problems, it is easy to check if a given set of input genomes follows these assump-

tions. Furthermore, as demonstrated by the theoretical results listed in Section 2.1, the

assumptions above offer a solid basis for potential future extensions and enhancements.

Based on Assumption 3, the input to our problem comprises sequences, referred to as

repmaps, of both permutation elements, belonging to a set N , and paired repeats, belonging

to a set R. Each permutation element appears exactly once in the repmap, while each repeat

appears exactly twice. In addition to the permutation elements (represented by numbers)

and based on Assumption 1, the repeats (represented by lowercase characters) are also signed.

1This information can be obtained using techniques similar to those standardly used for preparing per-
mutations.

7

Given a repmap s, two repeat elements si, sj ∈ R are considered a pair if |si| = |sj| (i.e.,

their absolute values are equal). If they have opposite signs (si = −sj) we refer to them

as an inverted repeat pair ; otherwise they are called a direct repeat pair. The set of repeats

appearing in s is denoted by R(s) = {|si|, si ∈ R} and referred to as the repeat set. We

denote the restriction of s to the permutation elements in N by s|N and refer to it as the

induced permutation. The restriction of s to the repeat elements is denoted by s|R and is

referred to as the repeat subsequence.

Example. Consider the repmap s = 1 a −4 −a −b 3 2 −b 5 . Here, +a,−a is

an inverted repeat pair, while −b,−b is a direct repeat pair. Moreover, we have R(s) = {a, b}.

The induced permutation is s|N = 1 −4 3 2 5 , and the repeat subsequence is given

by s|R = a −a −b −b . Figure 3

The next three definitions are intended to formalize the biological assumptions (1-4)

into a mathematical model of an evolutionary process. The first definition is based on

Assumption 1, as follows.

Definition 1 (Legal Reversal). Let s = s1, . . . , sn be a repmap and let ρ = ρ(i, j) for

1 < i < j < n be a reversal affecting the subsequence si, . . . , sj in s. The reversal ρ is called

legal if it is bordered by an inverted repeat pair, i.e., if si−1 = −sj+1 (see Figure 3c). We

say then that ρ fulfills the repeat pair si−1, sj+1.

The next two definitions are both based on Assumptions 2 and 4.

Definition 2 (Legal Scenario). Given a reversal sequence ̺ = ρ1, . . . , ρm affecting s, we say

that ̺ is a legal scenario relative to a subset of repeat pairs R ⊆ R(s) if ∀i ∈ {1, . . . , m}, ρi

is a legal reversal when acting on s · ρ1 · · · ρi−1 and if ̺ fulfills each repeat in R exactly once

(see Figure 3c). If R = R(s), we refer to ̺ simply as a legal scenario. If R 6= R(s) is obvious

from the context, we refer to ̺ as a partially legal scenario.

8

Definition 3 (RAPT). Given a repmap S (ancestor), a Repeat-Annotated Phylogenetic Tree

originating in S (see Figure 4) is a triplet (T, f, g), where T = (V, E) is a directed tree with

root vr ∈ V such that all the inner nodes (except perhaps the root) are of degree ≥ 3,

f : V → (R ∪ N)∗ maps assignments (i.e., repmaps) to the nodes, and g : E → 2R(S) maps

labels to the edges, such that:

1. The edge labels are a partition of R(S), i.e., for every two edges e, e′ ∈ E : g(e)∩g(e′) =

∅ and
⋃

e∈E g(e) = R(S).

2. The assignments to the nodes fulfill the following two requirements:

(a) The assignment to the root vr equals S, that is f(vr) = S.

(b) Assuming u ∈ V is the immediate parent of v ∈ V and that e ∈ E is the edge

connecting them, we require that g(e) ⊂ R(f(u)) and that there exists a legal

scenario ρ1, . . . , ρm with respect to g(e) such that (f(u) · ρ1 · · · ρm)|N = f(v)|N
(Definition 2).

3. The repeat set R(s) of a leaf repmap s contains only repeats that engaged in reversals

at some point during the history of s, i.e., R(s) = g(path(vr, s)).
Figure 4

2.1 The Main Results of This Paper

In this paper we study the following problems: Can one reconstruct an unknown RAPT

(T, f, g) given, as input, a set L of the corresponding leaf repmaps? More specifically, does L

uniquely determine the RAPT? Are the legal scenarios linking the assignments in the RAPT

nodes unique? Furthermore, can one efficiently reconstruct the unknown RAPT and the

corresponding scenarios? Herein we summarize the answers to these questions.

First, in Section 3, we consider the basic case in which the tree T of the RAPT contains

a single leaf and a single ancestor. Since in this case both the tree T and the labels g are

9

trivially determined, our results pertain to both the scenario and the ancestral assignment

reconstructions, as follows:

Uniqueness: We show that the ancestral assignment is uniquely determined (Section 3.1).

This result is surprising given the ambiguity of the scenarios. (Section 3.2).

Complexity: We give a linear-time algorithm for reconstructing the ancestor (Section 3.3.1).

Contrary to the classical SBR problem, our algorithm utilizes the constraints introduced by

the repeats to calculate the unique ancestor. This algorithm is then employed to solve the

problem of reconstructing a plausible legal scenario, by a reduction to SBR (Section 3.3.2).

Next, in Section 4, the multiple leaf RAPT is studied. Based on the results obtained

for the single leaf case, it is straightforward to show that, in the multiple leaf case, the

tree topology T , the edge labels g, and the leaf repmaps L both uniquely determine the

induced permutations in the inner node assignments and also enable their reconstruction in

linear-time. Hence, the complexity and uniqueness issues are reduced to the pair (T, g). To

investigate the latter, we introduce a new data structure, which is an abstraction of such

(T, g) pairs, called set-tries (see Figure 4), which are trie-like structures over sets instead of

words (Section 4.1). In terms of this abstraction, our results can be formulated as follows:

Uniqueness: We show that the leaf set collection uniquely determines the underlying set-

trie(Section 4.2).

Complexity: We give a linear-time algorithm to efficiently reconstruct set-tries from an input

leaf set collection(Section 4.3).

10

3 The Single Leaf RAPT

Throughout this section, we assume without loss of generality that the repmaps are given

in an easy to handle format, as follows. Consider a repmap (ancestor) S to which a legal

scenario ̺ was applied and denote the result by s = S · ̺ (the notation of S denoting the

ancestor and s denoting the descendant is used consistently throughout this section). We

assume that S (and hence s) starts and ends with a permutation element (otherwise it

can be padded). In addition, we assume that S (and hence s) does not contain successive

permutation elements (or otherwise they can be united to form a single new permutation

element). Figure 5

Whereas uniting successive permutation elements into a single element is straightforward,

dealing with successive repeat elements in the input sequence is more challenging. For

instance, having successive repeats implies that the corresponding breakpoints may have

been reused (the issue of breakpoint reuse has been repeatedly debated in the literature and

is currently controversial [Sankoff and Trinh, 2005, Trinh et al., 2004, Pevzner and Tesler,

2003,Bourque and Pevzner, 2002,Peng et al., 2006]). From a modeling point of view, however,

successive repeats distinguish the RAPT problem from the SBR problem: when they are

present in a repmap, its set of legal scenarios (see Definition 2) and the set of SBR scenarios

[Kececioglu and Sankoff, 1993] of its induced permutation are not necessarily the same, as

demonstrated in Figure 3. This is due to the fact that SBR aims to minimize the number

of reversals, whereas RAPT is driven by the objective of fulfilling the constraints imposed

by the repeats. Still, for a subset of the repmaps, both sets of legal and SBR scenarios are

equal. We refer to these special repmaps as “normalized” and define them below. Normalized

repmaps serve as stepping stones for our study; see Figures 3 and 5.

Definition 4 (Normalized Repmap). A repmap S is a normalized repmap if between every

two repeats in it there is a permutation element from N .

11

3.1 Asserting Uniqueness of Ancestor

In this section we prove that all legal scenarios lead to the same ancestral repmap. This

result is surprising, given the richness of the set of all legal scenarios (see Section 3.2 and

Figure 6) . We first consider the special subclass of normalized repmaps(Claim 1–Lemma 7).

In this subclass, the proof of uniqueness involves a breakpoint counting argument, showing

that all legal scenarios are optimal sorting scenarios (namely SBR scenarios). Next, we

extend the uniqueness claim from the subset of normalized repmaps to the general repmap

case(Claim 8–Theorem 10). The proof here is achieved by transforming any given repmap to

a corresponding normalized one and by asserting that this transformation indeed preserves

the uniqueness property.

Without loss of generality, we assume that S|N is sorted (the elements can be always

renamed to accommodate this order). In the following we show that legal scenarios affecting

normalized repmaps are SBR scenarios.

Claim 1. Let S be a repmap, ̺ a legal scenario, and s = S · ̺. Then S is normalized iff s

is normalized.

Proof. Assume S is normalized. We show that s is normalized as well. The other direction

is obtained by changing the roles of S and s.

The proof is by induction on m, the number of reversals in the scenario ̺.

Base case: for m = 1, assume the first reversal ρ1 fulfills the inverted repeat Si and

its pair-mate Sj, where i < j. Since S is normalized, we have Si+1, Sj−1 ∈ N (notice

that i + 1 ≤ j − 1). Denote t = S · ρ1. Then we get ti−1, ti, ti+1 = Si−1, Si,−Sj−1 and

tj−1, tj, tj+1 = −Si+1, Sj, Sj+1, and hence each of the repeats ti and tj is still surrounded by

permutation elements. The rest of the repmap stays trivially normalized.

The induction step is established similarly.

Definition 5 (Surrounding). Given a repmap t, the surrounding of an element ti is the

12

subsequence of elements ti−1, ti, ti+1.

Claim 2. Let S be a normalized repmap and ̺ = ρ1, . . . , ρm a partially legal scenario (see

Definition 2). Denote t = S · ρ1, where ρ1 fulfills the inverted repeat pair Si and Sj. Then

the surroundings of the fulfilled repeats Si = ti and its pair-mate Sj = tj remain contiguous

throughout the rest of the reversals in ̺.

Proof. By Claim 1, t is normalized. Thus, the surrounding of ti, namely ti−1, ti, ti+1, and the

surrounding of tj , namely tj−1, tj , tj+1, contain no repeats. Since the inverted repeat pair ti

and tj is already fulfilled, and since it is assumed that each repeat pair is fulfilled exactly

once, no reversal can cut through their surroundings.

By induction on Claim 2 we get the following corollary.

Corollary 3. Let S be a normalized repmap and ̺ = ρ1, . . . , ρm a partially legal scenario.

Denote t = S · ρ1 · · · ρk for k < m. The surrounding of any fulfilled repeat pair in ρ1, . . . , ρk

remains contiguous throughout the rest of the reversals in ̺.

Corollary 3 implies that the surrounding of each repeat in s is the same as its surrounding

after the reversal fulfilling it was applied during the scenario ̺. This observation as well as the

following definition and theorem, commonly used in SBR, are helpful for the reconstruction

step, which we consider next.

Definition 6 (Breakpoint). Given a repmap s, a breakpoint in t = s|N is a pair of successive

elements ti, ti+1, such that ti+1 − ti 6= 1 [Kececioglu and Sankoff, 1993]. A breakpoint in s is

a pair of permutation elements that is a breakpoint in s|N . If s|N contains no breakpoints,

we call it sorted. We call s sorted if s|N is sorted.

Theorem 4 ([Kececioglu and Sankoff, 1993]). Each reversal can create at most two break-

points.

13

Lemma 5. Let S be a (sorted) normalized repmap and ̺ = ρ1, . . . , ρm be a legal scenario.

Denote s = S · ̺. Then, a legal reversal affecting s eliminates two breakpoints.

Proof. Suppose the reversal fulfills the inverted repeat pair sp and sq in s. Let ρk for k < m

be the reversal in the scenario ̺ fulfilling this repeat pair. Denote t = S · ρ1 · · · ρk−1 and

let ti and tj be the corresponding elements to sp and sq in t, respectively. Without loss of

generality, we assume that i < j (otherwise rename p and q). By Corollary 3 the surroundings

of sp must be either ti−1, ti,−tj−1 or tj−1,−ti,−ti−1. Similarly, the surrounding of sq must

be either −ti+1, tj , tj+1 or −tj+1,−tj, ti+1. However, since ti and tj are an inverted pair in

t · ρk, and sp and sq are an inverted pair in s, ti and tj (as well as their surroundings by

Corollary 3) must have been affected either both by an odd or both by an even number of

reversals throughout ρk+1, . . . , ρm. Therefore, if the surrounding of sp equals ti−1, ti,−tj−1,

then the surrounding of sq must equals −ti+1, tj, tj+1. If, on the other hand, the surrounding

of sp equals tj−1,−ti,−ti−1 then the surrounding of sq must equals −tj+1,−tj , ti+1.

In the first configuration, if q < p we get that after performing the legal reversal the sur-

roundings become −ti+1, tj ,−ti−1 and −tj+1, ti,−tj−1. Note that ti−1 and ti+1 are successive

in t, and have not been affected by any reversal throughout ρ1, . . . , ρk−1. Therefore, they

are successive in S as well. A similar claim holds for tj−1 and tj+1. Thus, the legal reversal

combines two pairs of successive elements and hence reduces the number of breakpoints by

2. The case p < q and the other configuration is dealt with similarly.

By induction on Lemma 5 we get the following corollary.

Corollary 6. Let S be a normalized repmap and ̺ = ρ1, . . . , ρm a legal scenario. Denote

s = S · ̺. Then, each reversal in a partially legal scenario ̺′ affecting s eliminates two

breakpoints.

Let k = |R(S)| be the number of different repeats in S. Since each repeat is fulfilled

exactly once, the number of reversals in a legal scenario affecting S is k as well. By Theorem

14

4, the number of breakpoints in s is bounded by 2k. Corollary 6 implies that a legal scenario

eliminates 2k breakpoints and does not create new ones. Thus, all legal scenarios must be

SBR scenarios and hence lead to the same unique ancestral permutation S|N . Because the

induced permutation of the reconstructed ancestor is unique, and by a similar argument to

the one used in the proof of Lemma 5, the repeats’ order and signs in the reconstructed

ancestor must be identical to those in S. Therefore, in summary, all legal scenarios lead to

the same ancestor, namely S:

Lemma 7. Let S be a normalized repmap, ̺ a legal scenario, and s = S · ̺. Then, all legal

scenarios affecting the (normalized) repmap s result in the same correct ancestor S.

Now assume that S is a repmap (not necessarily normalized). We need to show that all

legal scenarios affecting s result in S. In order to achieve this, we first transform S to a

normalized repmap and then apply Lemma 7. The transformation is done by adding rational

numbers between successive repeats. Thus, the resulting repmap is no longer a permutation

of integers. To distinguish it, we refer to it as an extended repmap.

Claim 8. Let S be a sorted repmap, ̺ a legal scenario, and s = S · ̺. There exists an

extended normalized repmap S ′ such that S is a subsequence of S ′, S|R = S ′|R, and S ′ is

sorted.

Proof. Let Sj · · ·Sk ∈ R∗, for j < k, be a block of successive repeats in S surrounded by

permutation elements Sj−1, Sk+1 ∈ N . Adding the rational number Sj−1+(i−j+1)/(k−j+1)

after the repeat Si for i ∈ {j, . . . , k−1} and repeating the process for all blocks of successive

repeats result in a sorted (extended) normalized repmap S ′ having S as a subsequence, which

fulfills S|R = S ′|R as well.

Note that since the repeat sequences in S and S ′ are the same, the legal scenarios affecting

S and S ′ are also the same. Thus we apply ̺ to S ′ and denote the result by s′ = S ′ ·̺. Since

15

the elements of S in S ′ undergo the same scenario when applying ̺ to either of S or S ′, the

relative order between these elements in s and s′ is the same. This observation establishes

the following claim:

Claim 9. Let S be a repmap, ̺ a legal scenario, and s = S · ̺. Let S ′ be the normalization

of S as in Claim 8 and let s′ = S ′ · ̺. Then s is a subsequence of s′.

Claim 9 implies that s and s′ have the same set of legal scenarios. However, s′ is normal-

ized. Let ̺′ be a legal scenario affecting s and s′ (see Figure 5). By Lemma 7, we know that

S ′ = s′ · ̺′. By applying Claim 9 to s, s′ and ̺′ (where S ← s, S ′ ← s′, ̺← ̺′), we get that

P = s · ̺′ is a subsequence of S ′ = s′ · ̺′, and is hence sorted. Since, by definition, S is a

subsequence of S ′ as well, and P and S have exactly the same elements, we get that P = S.

Thus, we conclude that all legal scenarios on s must result in the same correct ancestor S.

Theorem 10 (Uniqueness). Let S be a repmap, ̺ a legal scenario, and s = S · ̺. Then, all

legal scenarios affecting s result in the same correct ancestor S.

3.2 Are the Reconstructed Scenarios Unique?

Theorem 10 would have been trivial to prove had there been a single legal scenario affecting s,

or alternatively, if all the legal scenarios affecting s were “very similar” (as defined below). In

this section we show that such is not the case, and that these scenarios might be significantly

different.

Given two disjoint reversals, one can always reorder them to get different scenarios.

However, these scenarios, despite being different, are “very similar”, and trivially yield the

same ancestral repmap. Formally, we define “very similar” as an equivalence relation over

the space of scenarios as follows: Given a reversal ρ affecting a repmap s, we define the image

Im(ρ) of the reversal ρ to be the set of permutation elements in s that the reversal affects.

16

Example. Suppose s = 1 a −4 −a [−b 3 2 b] 5 , and ρ = ρ(5, 8) (designated by

the brackets []), then Im(ρ) = {3, 2}.

Thus, given a scenario ̺ = ρ1, . . . , ρm, we define the image of the scenario to equal the set of

images collected from all its reversals: Im(̺) = {Im(ρi) : i ∈ {1, . . . , m}}. Given two legal

scenarios ̺1 and ̺2 affecting the same repmap s, we say that they are equivalent, and denote

̺1 ≡ ̺2, if they affect the same sets of elements in s, i.e., Im(̺1) = Im(̺2). One can easily

verify that the above relation is an equivalence relation over the space of scenarios.

We can now check the “complexity” of the set of legal scenarios affecting a repmap s

relative to the above defined equivalence relation. More specifically, the question is whether

the set of legal scenarios affecting a repmap s is contained in a single equivalence class?

Figure 6 demonstrates that such is not the case. Figure 6

3.3 Algorithms for Ancestor and Scenarios Reconstruction

Given a repmap s = S ·̺, where S and ̺ are unknown, we present a linear-time algorithm for

reconstructing S and a sub-quadratic algorithm for reconstructing a possible legal scenario ̺′,

where, by Theorem 10, S = s · ̺′. The reconstruction of the ancestor in linear-time is made

possible by utilizing the constraints introduced by the repeats and the strong connection

established between the repeats and their surroundings in normalized repmaps(Corollaries 3

and 6). In fact, we first show how to transform s to a normalized repmap s′ for which

the ancestor S ′ is sorted2 based only on the repeat subsequence s|R (see Figure 5). Then

we simply rename the matching elements from S ′ to obtain S (see Figure 3b). Unlike

Claim 8, where we transformed a sorted repmap to an extended normalized one, here the

transformation to a normalized format is done based on the repeats in s and without knowing

the ancestor repmap S.

2Note that, unlike the previous section, here we can no longer assume without loss of generality that S

is sorted.

17

After computing the ancestor S, we solve the problem of finding a legal scenario trans-

forming s to S in sub-quadratic time by a reduction to SBR. In the general case, as exem-

plified in Figures 3c and 3d, applying SBR to s|N may yield illegal scenarios. This is due

to the fact that SBR aims to minimize the number of reversals, while RAPT is driven by

the objective of fulfilling the constraints imposed by the repeats. However, this barrier is

overcome here by transforming a repmap to its normalized format, which intuitively uses

O(|s|) additional “virtual” permutation elements to simulate the constraints imposed by the

repeats (see Figures 3a and 3b). Thus, to reconstruct a legal scenario, we apply SBR algo-

rithms to the permutation elements of s′ and S ′ and show that the resulting scenario is legal

on s. Note that whereas reconstructing the ancestor in linear-time is made possible thanks

to the constraints introduced separately by each repeat pair, calculating a legal scenario is

complicated by the interaction between the constraints introduced by the different repeat

pairs.

3.3.1 Reconstructing the Unique Ancestral Repmap S

Reconstructing the ancestral repmap S can be näıvely achieved by applying some of the

techniques demonstrated in [Kaplan et al., 1997,Bergeron, 2005] to the overlap graph con-

structed over the repeat pairs. This approach, however, yields a quadratic-time algorithm

for both reconstructing the ancestor and finding a legal scenario.

Here, we present a different approach (with lower complexity) for tackling the problem.

Let S be an ancestral repmap, ̺ a legal scenario affecting S, and s = S · ̺. Consider a

transformation of S yielding a normalized sorted repmap S ′, and let s′ = S ′ · ̺. According

to the above and since all the transformations are reversible, calculating s′ from s can be

done by the following series of transformations:

s −→ S −→ S ′ −→ s′.

18

However, since S is unknown, this path is intractable. Yet, surprisingly, calculating s′

from s can alternatively be done based on the repeat sequence s|R and without knowing

S. Intuitively, this can be explained as follows. Since s′ is normalized, the locations of

the permutation elements are constrained by the locations of the repeats. Moreover, as

Corollaries 3 and 6 show, each permutation element is constrained by the repeat next to it.

Thus, the position of a permutation element can be determined from local information (the

position of a single repeat) in constant time, and the whole repmap can be reconstructed in

linear-time. Note that the above transformation implies that the diagram having S, S ′, s,

and s′ as its vertices is commutative (Figure 5).

Before describing the reconstruction algorithm formally, we give an example illustrating its

strategy.

Example. Consider the sequence s and the corresponding sequence s′ in Figure 3a and

suppose that we wish to recover s′ based on s|R. The first and second elements in s′ are

easily fixed, since s′ must always start with 1 and the second element in s′ always equals

to the repeat appearing in the second position of s. Fixing the third element in s′ is more

challenging. For that, we consider the second element in both s and s′, i.e., the repeat −a,

and its corresponding pair-mate — the repeat a. By Corollary 3 we know that, since S ′

is sorted and normalized, once the repeat pair {−a, a} got fulfilled while transforming S ′

to s′, the surroundings of both repeats remain contiguous. In particular, the permutation

element 2, which appears directly after the repeat −a in S ′ (see Figure 3b) must appear in

the surrounding of the repeat a in s′; its exact position (i.e., before or after the repeat) is

determined based on two factors: whether the repeat pair is inverted or direct, and whether

the preceding permutation element 1 appears before the repeat −a or after it. In this

example, since the repeat pair is inverted and since the preceding permutation element 1

appears before the repeat −a, the permutation element 2 must precede the repeat a in s′(this

results from a similar argument to the one presented in the proof of Lemma 5). The sign of

19

the permutation element 2 is determined via a similar consideration.

The idea demonstrated in the above example is generalized via the following lemma:

Lemma 11. Let P be a sorted normalized repmap, ̺ a legal scenario affecting it, and p =

P · ̺. Consider a permutation element of p, 1 6= pi ∈ N . Given the index of the preceding

permutation element pi − 1, the index j of the successive permutation element pi + 1 is

determined by i, pi, and the repeat subsequence p|R.

Proof. Consider the repeats pi−1 and pi+1 surrounding pi, and let pi′ and pi′′ be their coun-

terpart repeats, respectively. By Corollary 3, the neighboring permutation elements pi − 1

and pi + 1 are neighbors to the repeats pi′ and pi′′. Since the index of pi − 1 is given, we

know near which repeat it is found. Suppose first that pi − 1 is found near the repeat pi′

(the other case is handled similarly). This implies that pi + 1 is found near the repeat pi′′ .

Moreover, by Corollary 6, the sign and the relative order between pi + 1 and the repeat pi′′

is determined by the sign of pi and whether the repeat pair pi′′ and pi+1 is a direct or an

inverted pair.

As exemplified above, since the permutation element 1 always appears with a positive

sign in the first index, then — similarly to the proof of Lemma 11 — we can determine

both the index and the sign of the permutation element 2. Note that for determining the

index of element 2 we need to know the index of the preceding element, its value (in this

case 1), and the repeat sequence s′|R = s|R. By induction, one can determine the index of

the permutation element k in s′ based on the indices of the preceding permutation elements

k − 1, k − 2 and the repeat sequence s|R. Thus, Lemma 11 implies that the repmap s′ can

be deduced from the repeat sequence of s. Moreover, calculating the index of the successive

permutation element as demonstrated in Lemma 11 can be done in constant time. Therefore,

s′ can be reconstructed in linear-time.

20

Lemma 12. Given a repmap s = S · ̺, where both the ancestor S and the legal scenario ̺

are unknown, let S ′ be the sorted normalization of S and s′ = S ′ · ̺. The normalized repmap

s′ can be calculated in linear-time and linear-space based on the repeat sequence s|R.

After calculating the repmap s′, determining S is a matter of renaming the repmap S ′

according to the correspondency established between the permutation elements of s and s′.

Thus, the calculation follows the path s→ s′ → S ′ → S. Figures 3a and 3b give an example

illustrating this process and Algorithm getAncestor implements this idea. Figure 7

Theorem 13 (Time Complexity). Given a repmap s = S · ̺, Algorithm getAncestor(s)

reconstructs the ancestor S in linear time (O(|s|)).

3.3.2 Reconstructing a Legal Scenario

Unlike the ancestor repmap reconstruction, the scenario reconstruction involves look-ahead

to avoid conflicts between repeat pairs. This problem is best demonstrated by an example.

Example. Consider the following repmap:

1 a −b −2 −a −c −4 b 3 c .

Suppose we were first to fulfill the inverted repeat pair b and −b. Such a choice would turn

the other two repeat pairs (a and c) into direct-repeat pairs. Thus, we reach a deadlock

without getting a legal scenario.

As demonstrated in the above example, choosing a legal reversal sequence that avoids dead-

locks is a delicate matter. We address this problem by utilizing the fact that we can calculate

the normalized repmaps s′ and S ′ in linear-time (Section 3.3.1). When both repmaps are

known, we show that an SBR reversal sequence sorting s′|N (to S ′|N) corresponds to a le-

gal scenario transforming s to S. Currently, the best algorithm for solving SBR works in

21

sub-quadratic time [Tannier and Sagot, 2004]. Hence, we get a sub-quadratic algorithm for

reconstructing a legal scenario.

Consider a normalized repmap p resulting from a legal scenario affecting a sorted and

normalized repmap P . Lemma 5 states that a legal reversal affecting p reduces the breakpoint

count by 2. The following lemma claims the opposite direction, and is proved similarly.

Lemma 14. Given a sorted normalized repmap P , let ̺ be a legal scenario, and let p = P ·̺.

Any reversal ρ that eliminates two breakpoints, such that ρ affects a subsequence of p that

begins and ends with permutation elements, is a legal reversal.

Proof. Since p is normalized and ρ affects a subsequence of it having permutation elements

on both its edges, ρ must be bordered by repeats. By the proof of Lemma 5, these repeats

must correspond to an inverted repeat pair.

By induction on Lemma 14 we get the following corollary.

Corollary 15. Let P be a given sorted normalized repmap, let ̺ = ρ1, . . . , ρm be a legal

scenario, and denote p = P · ̺. Let ̺′ be a scenario (not necessarily legal) in which each

reversal eliminates 2 breakpoints and affects a subsequence that begins and ends with permu-

tation elements. Then, ̺′ is a partially legal scenario.

If the scenario eliminates all the breakpoints in p (i.e., it sorts p) then, obviously, it must

fulfill all the repeat pairs and is hence legal.

Corollary 16. Let P be a given sorted normalized repmap, let ̺ = ρ1, . . . , ρm be a legal

scenario, and denote p = P · ̺. Let ̺′ be a scenario (not necessarily legal) in which each

reversal eliminates 2 breakpoints and affects a subsequence that begins and ends with permu-

tation elements such that P = p · ̺′. Then, ̺′ is a legal scenario.

Since p = P · ̺, Corollary 6 implies that p|N has an SBR scenario in which each re-

versal eliminates 2 breakpoints, and hence all SBR scenarios fulfill this property. Thus, by

Corollary 16, all SBR scenarios are legal.

22

Theorem 17. Let P be a sorted and normalized repmap, ̺ a legal scenario, and denote

p = P · ̺. A solution of SBR on p|N corresponds to a legal scenario on p.

Theorems 17 and 13 enable us to find a legal scenario transforming s to S as follows:

calculate s′ from s (byproduct of Algorithm getAncestor) and use SBR to find an optimal

scenario sorting s′|N . By Theorem 17 this scenario is legal on s′. Since s and s′ have the

same repeat sequence, the scenario is legal on s as well. Since computing s′ from s can be

done in linear-time, the complexity of finding a legal scenario for s is determined by the SBR

bottleneck. Currently, the most efficient algorithm for solving SBR has a time complexity

of O(n
√

n log n), where n = |s| [Tannier and Sagot, 2004].

Theorem 18 (Time Complexity). Given a repmap s = S · ̺, where both the repmap S and

the legal scenario ̺ are unknown, one can reconstruct a legal scenario transforming s to S

in O(n
√

n log n) time, where n = |s|.

23

4 The Multiple Leaf RAPT and Set-tries

In this section we show that the leaf assignments L = {s1, . . . , sq} uniquely determine the

underlying RAPT (T, f, g) up to (and not including) repeats in the inner nodes, i.e., they

dictate the tree topology, the induced permutations in inner node assignments, and the edge

labels. We then describe a linear-time algorithm for reconstructing this information from

the given input.

The proof of uniqueness is developed in two stages: first, the RAPT is reduced to a new

auxiliary data structure called a set-trie (see Section 4.1 and Figure 4), which encodes partial

information (tree topology and edge labels). Using this reduction, we show that both the tree

topology and the edge labels are uniquely determined (Section 4.2) and can be reconstructed

in linear-time based on the repeat sets {R(s) : s ∈ L} of the leaf assignments(Section 4.3).

Finally, the application of Theorems 10 and 13 to the above findings leads to the conclusion

that the induced permutations in the inner node assignments are uniquely determined and

can be reconstructed in linear-time based on the tree topology, the edge labels, and the leaf

assignments (Section 4.4).

4.1 Set-tries and Monotonic Collections

Word-tries are well-known data structures, commonly used in text compression and database

search [Gonnet, 1983]. They are used to store the information about the contents of each

node in the path from the root to the node rather than in the node itself, thus grouping

words with a common prefix along similar paths. Here we introduce a new data structure

which, similarly to word-tries, is also based on a tree topology and path-encoding, however,

the leaves of the new data structure correspond to sets instead of words (or sequences), as

defined below.

Definition 7 (Set-tries). Let A = {A1, . . . , Ak} be a collection of finite subsets of N. A

24

set-trie st over A is a pair st = (T, g), where T = (V, E) is a directed tree with a root vr

such that all the inner nodes (except perhaps the root) are of degree ≥ 3 and g : E → 2N

are labels to the edges. In the following discussion we assume that assignments to the nodes

f : V → 2N are also given. The labels g and the “virtual” assignments f need to fulfill the

following requirements:

1. f(vr) = ∅ and f is 1 : 1 from the leafs of T to A . Given that u ∈ V is an ancestor

of v ∈ V , we require that f(v) = f(u) ∪ g(path(u, v)). In particular, this requirement

implies ∀v ∈ V − {vr} : f(v) = g(path(vr, v)).

2. ∀e, e′ ∈ E, e 6= e′ : g(e)∩ g(e′) = ∅. Thus, the node assignments are determined by the

edge labels and vice versa.

Figure 4 gives an example of a set-trie and its derivation from a RAPT. We observe

the following monotonicity property of set collections corresponding to leafs of set-tries(see

Section 4.2).

Definition 8 (Monotonic Set Collection). A set collection A is monotonic if, for any three

sets A, B, C ∈ A , either A ∩ B ⊆ A ∩ C or A ∩ C ⊆ A ∩ B.

4.2 Uniqueness of Set-tries Based on Monotonic Collections
Figure 8

In this section we show that a set-trie is uniquely determined by the monotonic collection

assigned to its leafs. However, before addressing the uniqueness issue, we first prove that the

leaf assignments in a set-trie indeed correspond to a monotonic collection. Furthermore, we

assert that, for any given monotonic collection A , there exists a corresponding set-trie over

A . The existence proof is constructive, and serves as the basis for the set-trie reconstruction

algorithm presented in Section 4.3.

Lemma 19. Let A be a finite collection of finite subsets of N. There exists a set-trie over

A iff A is monotonic.

25

Proof. Assume first that A has a set-trie st. Consider three sets A, B, C ∈ A and let

vA, vB, vC be leafs in T such that f(vA) = A, f(vB) = B, f(vC) = C. Assume without loss of

generality that the inner node lca(vA, vC) (namely the least common ancestor) is lower (i.e.,

further away from the root) than the inner node lca(vA, vB). By Definition 7 it is easy to

see that A ∩ C = f(lca(vA, vC)) and A ∩ B = f(lca(vA, vB)). Moreover, since lca(vA, vC) is

lower, we have f(lca(vA, vB)) ⊆ f(lca(vA, vC)), and thus A∩B ⊆ A∩C and A is monotonic.

Next, assume that A is monotonic. We need to prove that there exists a set-trie over

A . We show this by induction on k, the number of sets in A . Base case: for k = 1 the

claim is trivial. Induction step: assume the claim holds for k − 1 ≥ 1, we need to prove it

for k. Consider the first k − 1 sets in A and denote them by A ′ = {A1, . . . , Ak−1}. By the

induction assumption, there exists a set-trie st′ over A ′. Note that since A is monotonic,

one can order the sets Ak ∩ A1, . . . , Ak ∩ Ak−1 in an increasing order (with respect to the

containment relation). Let Ak ∩ Ai be the maximum set in this collection and let v ∈ V be

the lowest (i.e., furthest away from the root) vertex on the path from vr to f−1(Ai) such that

f(v) ⊆ Ak. There exists such a vertex, since vr fulfills the requirement (f(vr) = ∅ ⊆ Ak).

Note that, by definition, f(v) ⊆ Ai, and thus f(v) ⊆ Ak ∩Ai. Next, we define the vertex v′,

which is the son of v in the emerging set-trie (see Figure 8).

To do that, we distinguish between the following two cases: v′ exists already in st′, in

which case it can be either a leaf or an inner node, or v′ does not exist in st′, and therefore

needs to be constructed.

1. If f(v) = Ak ∩ Ai, let v′ = v (v′ exists in st′). If v′ is a leaf, define a new vertex u

and connect it as a son to v′, label the connecting edge with the empty set, and define

f(u) = Ai.

2. If f(v) 6= Ak ∩ Ai (v′ does not exist in st′), let etail ∈ E ′ be the edge going out of v to

the vertex u such that (Ak ∩Ai − f(v)) ∩ f(u) 6= ∅. By the monotonicity assumption,

26

there is only one such node u. Define a new vertex v′, connect it with an edge e′ from

v and with an edge e′′ to u, and define f(v′) = Ak ∩ Ai, g(e′) = f(v′) − f(v), and

g(e′′) = f(u)− f(v′).

In both cases, create a new vertex w and connect it from v′ with an edge e′′′ such that

f(w) = Ak, and g(e′′′) = f(w) − f(v′). It is easy to see that the above modification is a

set-trie over A .

We are now ready to prove the uniqueness of set tries over monotonic collections.

Lemma 20 (Uniqueness). Let A be a monotonic collection. There exists a unique set-trie

over A .

Proof. By Lemma 19, there exists a set-trie over A . Here we prove that this trie is unique

by induction on k, the number of sets in the collection A . Base case: for k = 1, the claim

is trivial. Induction step: assume the claim holds for k− 1 ≥ 1, and consider a collection A

over k sets. By contradiction, let st and st′ be two different set-tries over A . Consider the

collection of the first k−1 sets in A and denote it by A ′. Trivially, the restrictions st|A ′ and

st′|A ′ are set-tries over A ′. By the induction assumption st|A ′ = st′|A ′. In particular, if the

tree topologies of st and st′ differ, then pathst(vr, f
−1(Ak)) 6= pathst′(v

′

r, f
′−1(Ak)) (the paths

in st and st′ respectively). Let d and d′ be the direct parents of f−1(Ak) and f ′−1(Ak) in T

and T ′ respectively. By Definition 7 and since the paths are not equal, g(pathst(vr, d)) and

g′(pathst′(v
′

r, d
′)) are not equal. Without loss of generality, assume that ∃a ∈ g(pathst(vr, d))

and a /∈ g′(pathst′(v
′

r, d
′)). By Definition 7, a ∈ g(pathst(vr, d)) ⊆ g(pathst(vr, f

−1(Ak))) and

hence a ∈ Ak. Let Ai 6= Ak be a descendant of d (by Definition 7 all internal nodes are of

degree ≥ 3. If d is the root and has only Ak as its child, then the tree is trivial). By similar

reasoning, we have that a ∈ Ai. However, since a /∈ g′(pathst′(v
′

r, d
′)), we must have that

a ∈ g′(pathst′(d
′, f ′−1(Ak))). Thus a is not in g′(pathst′(v

′

r, f
′−1(Ai))). A contradiction.

27

Note that the assignments to the inner nodes are uniquely determined by the tree topol-

ogy, since we have f(lca(Ai, Aj)) = Ai ∩ Aj. Furthermore, the edge labels are uniquely

determined by the inner node assignments, since for an edge e ∈ E going from u to v,

u
e−→ v, we have g(e) = f(u)− f(v).

4.3 A Linear-time Algorithm for Set-trie Construction

Adding an element to a standard word-trie utilizes the fact that the labels on the path from

the root to the leaf representing the word preserve the original order of the characters in the

word. Such is not the case when dealing with sets. It is easy to see that adapting the current

strategies used in constructing word-tries [Gonnet, 1983] to the task of set-trie reconstruction

results in algorithms with quadratic-time complexity. In this section we present a more

efficient method with linear-time complexity (Θ(|A |) where |A | = ∑k

j=1 |Aj|). We describe

an algorithm to construct the set-trie via incremental leaf insertions, based on the induction

described in the proof of Lemma 19 and we use the same notation. At step k of the algorithm,

the set-trie st′ is updated with the leaf node corresponding to Ak. As elaborated in the proof

of Lemma 19 and as demonstrated in Figure 8, the leaf insertion requires two consecutive

operations: Figure 9

1. Find: Identify the node v ∈ V ′ which is the lowest vertex such that f(v) ⊆ Ak,

and the edge etail ∈ E ′ which is the edge connecting v to the vertex u such that

(Ak ∩Ai− f(v))∩ f(u) 6= ∅. In addition, compute the sets B = g(etail)∩Ak (elements

common to the label of etail and the new set Ak) as well as C = Ak − ∪k−1
j=1Aj (new

elements to be added to the current set-trie).

2. Split: Use the result of the Find operation to update the set-trie st′ = (T ′, g′) with

the new leaf.

28

The above Find and Split operations need to be distinguished from the classical disjoint

set operations surveyed in [Galil and Italiano, 1991]. Here, tricks such as path compression

cannot be applied since the set-trie is defined by its topology. Further, note that strategies

such as employing numbering on the edges to reflect their level in the tree in order to sup-

port efficient Find queries are likely to yield inefficient solutions, since the numbering could

change dynamically via Split operations. Therefore, the crux of our solution is in utilizing

monotonicity to efficiently (in O(|Ak|)) maintain information regarding the local neighbor-

hood of each edge. This information is then used to enable an efficient implementation of

both operations in time-complexity that is linear in the size of each set O(|Ak|). Summing

up over all leaves in A then yields a linear-time complexity, Θ(|A |). The pseudo-codes for

the linear time Find (Algorithm 2) and Split (Algorithm 3) are given below. Figure 10

Lemma 21 (Find). Given a monotonic set collection A = {A1, . . . , Aℓ} and a set-trie st′

over A ′ = {A1, . . . , Ak−1}, where 2 ≤ k ≤ ℓ, Algorithm 2 performs Find (Ak) in time

complexity that is linear in the set size O(|Ak|).

Proof. Explicitly constructing the edge label function g(·) and using it to find v and etail

is likely to yield an inefficient solution because of the need to perform set intersection and

subtraction operations. Instead, we construct a quasi-inverse function by mapping each

element in ∪A∈A A to the edge whose label contains it (if any). This way, the node v

can be efficiently found via two passes over the elements of Ak, as follows. Similarly to

the proof of Lemma 19, consider etail ∈ E ′, the lowest (i.e., furthest away from the root)

edge whose label intersects with Ak (if none exists then etail = null and we consider it

as pointing to the root vr). Clearly, etail leads into v if f(v) = Ak ∩ Ai, and otherwise

etail is the edge connecting v with u (see the proof of Lemma 19 for a reminder of the

notation). For a ∈ Ak, let ea ∈ E ′ denote the edge with a ∈ g′(ea) (i.e., the quasi-inverse

function) and let e′a ∈ E ′ denote the edge immediately preceding ea in T ′ — see Figure 8

for an example (ea = e′a = null if a does not appear in T ′). In the first pass, the edges

29

in {e′a : a ∈ Ak} are marked (i.e., for each a ∈ Ak first the edge ea is queried, and the

edge e′a which precedes ea is marked). Let b ∈ g(etail) ∩ Ak (by definition g(etail) ∩ Ak 6= ∅

if etail 6= null). Note that eb = etail. Because of the extremity of etail, we know that it

is the only edge among {ea : a ∈ Ak} that was not marked in the first scan. Therefore,

finding B = {b ∈ Ak : eb 6= null is unmarked} = g(etail) ∩ Ak, and hence etail, as well as

C = {c ∈ Ak : ec = null} = Ak − ∪k−1
j=1Aj can be computed via one additional pass over

the elements of Ak (the variables etail, B, and C are the output of the Find operation and

are used as input to the Split operation to follow). Clearly, both ea and e′a can be queried

in constant time, e.g., by maintaining the correspondences a → ea and ea → e′a in two

arrays, namely aToEdge and prevEdge in the pseudo-code, respectively. The two passes are

computed in O(|Ak|), and hence the Find has a linear-time complexity.

Lemma 22 (Split). Given a monotonic set collection A = {A1, . . . , Aℓ}, a set-trie st′ over

A ′ = {A1, . . . , Ak−1}, where 2 ≤ k ≤ ℓ, as well as etail, B, and C, the result of the Find

(Ak) operation (Algorithm 2), Algorithm 3 performs Split (Ak) in time complexity that is

linear in the set size O(|Ak|).

Proof. First we analyze the implementation of the Split operation for the more challenging

case of adding v′ as a new node. Then we analyze the implementation in the other case (see

the proof of Lemma 19). Let Ak be the set to be inserted in the set-trie st′ = (T ′, g′). Apply

the Find operation to it, and consider its result, namely the edge to be split etail, the set B

of elements appearing in both Ak as well as in the label of etail (i.e., B = Ak ∩ g(etail)), and

the set C of elements appearing in Ak but not in the set-trie st′ (i.e., C = Ak − ∪k−1
j=1Aj).

The Split operation needs to cut the edge etail according to the set B, so that instead of a

single edge

v
etail−−−−→

g(etail)
u

30

we get two new edges

v
e′−→
B

v′ e′′−−−−−−→
g(etail)−B

u .

Furthermore, we need to add a leaf w corresponding to the set Ak and an edge connecting

it to v′ with C as the edge’s label: v′ e′′′−→
C

w (see Figure 8). Let aToEdge and prevEdge

be arrays as introduced in the Find implementation, let count denote a global variable

keeping count of the total number of edges in the set-trie at any given moment, and let

edgeElementsCount denote an additional array mapping each edge to the number of elements

in its label e→ |g(e)|. These arrays and counters are used to implement Split in O(Ak) as

follows: Create a new vertex v′ and a new edge e′ pointing from v to v′ (using the global

counter count). Let all the elements in B point to e′, v
e′−→
B

v′ (by changing their values

in aToEdge). This implies that only elements in g(etail) − B now point to etail. Instead of

adding a new edge e′′ connecting v′ to u (which would require O(g(etail)−B) time), redefine

etail to connect v′ to u: v′
etail−−−−−−→

g(etail)−B
u. Update both the number of elements contained in

the labels of each of e′ and etail (in the edgeElementsCount array) as well as their preceding

edges (in the prevEdge array). This implicitly establishes the new path

v
e′−→
B

v′ e′′−−−−−−→
g(etail)−B

u .

Next, construct the edge v′ e′′′−→
C

w by adding a new vertex w and a new edge e′′′, update

the edge’s number of elements, its preceding edge, and let the elements in C point to it.

If v′ exists in the set-trie st′, then splitting etail is not required. One needs only to add

w (and perhaps one additional vertex if v′ is a leaf).

By applying the above Find and the Split operations via incremental additions of sets

from A to the set-trie, it is possible to construct the tree topology T and to implicitly

31

construct the edge labels g in linear-time (O(|A |)). Explicitly constructing g from aToEdge

can be done in linear-time by a straightforward single pass over the array aToEdge.

Theorem 23 (Time Complexity). Given a monotonic collection A , a set-trie over A can

be constructed in linear-time (Θ(|A |)).

4.4 From Set-tries Back to RAPT

Based on Definition 3 it is easy to see that the collection of repeat sets {R(s) : s ∈ L} is

monotonic. In particular, a RAPT (T, f, g) with leaf assignments L = {s1, . . . , sq} can be

readily mapped to a set-trie (T ′, g′) with node assignments f ′ as follows: define T ′ = T ,

g′ = g, and ∀s ∈ L : f ′(s) = R(s), i.e., the leaf assignments of the set-trie are the repeat sets

of the leaf assignments of the RAPT. Figure 4 gives an example illustrating this mapping.

Since, by Lemma 20, a set-trie is uniquely determined by its leaf assignments, we imply that

the repeat sets {R(s) : s ∈ L} uniquely determine the tree topology T and the edge labels g

of the RAPT. Thus, to prove the uniqueness of the RAPT, it is sufficient to show that the

induced permutations in the inner node assignments are uniquely determined by T , g, and

L. However, this result is immediately established by Theorem 10.

Theorem 24 (Uniqueness). The leaf assignments L uniquely determine the underlying

RAPT up to (and not including) repeats in the inner nodes.

Based on the linear-time algorithm for reconstructing set-tries (Theorem 23) and the

linear-time algorithm for reconstructing ancestral assignments (Theorem 13), we get a linear-

time algorithm for reconstructing a RAPT from its leaf assignments.

Theorem 25 (Time Complexity). Given the leaf assignments L of an unknown RAPT, re-

constructing the RAPT (up to repeats in the inner nodes) can be done in linear-time (Θ(|L|)).

32

5 Acknowledgment

Firas Swidan was supported in part by a Fellowship from the Planning and Budgeting

Committee of the Council for Higher Education in Israel. The research of Michal Ziv-Ukelson

was supported in part by the Aly Kaufman Post Doctoral Fellowship.

33

References

[Achaz et al., 2004] Achaz, G., Boyer, F., Rocha, E. P. C., Viari, A., and Coissac, E., 2004.

Extracting approximate repeats from large DNA sequences.

[Achaz et al., 2003] Achaz, G., Coissac, E., Netter, P., and Rocha, E. P. C., 2003. Asso-

ciations Between Inverted Repeats and the Structural Evolution of Bacterial Genomes.

Genetics, 164(4):1279–1289.

[Bader et al., 2001] Bader, D. A., Moret, B. M. E., and Yan, M., 2001. A linear-time algo-

rithm for computing inversion distance between signed permutations with an experimental

study. Journal of Computational Biology, 8(5):483–491.

[Bafna and Pevzner, 1996] Bafna, V. and Pevzner, P. A., 1996. Genome rearrangements and

sorting by reversals. SIAM J. Computing, 25:272–289.

[Bafna and Pevzner, 1998] Bafna, V. and Pevzner, P. A., 1998. Sorting by transpositions.

SIAM Journal on Discrete Mathematics, 11(2):224–240.

[Bender et al., 2004] Bender, M., Ge, D., He, S., Hu, H., Pinter, R., Skiena, S., and Swidan,

F., 2004. Improved bounds on sorting with length-weighted reversals. In Proc. 15th

ACM-SIAM Symposium on Discrete Algorithms, pages 912–921.

[Bergeron, 2005] Bergeron, A., 2005. A very elementary presentation of the hannenhalli-

pevzner theory. Discrete Applied Mathematics, 146(2):134–145.

[Bergeron et al., 2002] Bergeron, A., Heber, S., and Stoye, J., 2002. Common intervals and

sorting by reversals: A marriage of necessity. Bioinformatics, 18:S54–S63.

[Bergeron et al., 2004] Bergeron, A., Mixtacki, J., and Stoye, J., 2004. Reversal distance

without hurdles and fortresses. In 15th Ann. Symp. on Combinatorial Pattern Matching,

pages 388–399.

34

[Bergeron et al., 2005] Bergeron, A., Mixtacki, J., and Stoye, J., 2005. On sorting by translo-

cations. In 9th Ann. Int. Conf. Research in Computational Molecular Biology (RECOMB),

pages 615–629.

[Berman and Hannenhali, 1996] Berman, P. and Hannenhali, S., 1996. Fast sorting by re-

versals. In Proc. 7th Symp. on Combinatorial Pattern Matching, pages 168–185.

[Bourque and Pevzner, 2002] Bourque, G. and Pevzner, P. A., 2002. Genome-scale evolu-

tion: Reconstructing gene orders in the ancestral species. Genome Res., 12(1):26–36.

[Bourque et al., 2005] Bourque, G., Zdobnov, E. M., Bork, P., Pevzner, P. A., and Tesler, G.,

2005. Comparative architectures of mammalian and chicken genomes reveal highly variable

rates of genomic rearrangements across different lineages. Genome Res., 15(1):98–110.

[Brocchieri, 2001] Brocchieri, L., 2001. Phylogenetic inferences from molecular sequences:

Review and critique. Theor. Popul. Biol., 59(1):27–40.

[Bzymek and Lovett, 2001] Bzymek, M. and Lovett, S. T., 2001. Instability of repetitive

DNA sequences: The role of replication in multiple mechanisms. Proc Natl Acad Sci U S

A, 98(15):8319–8325.

[Caprara, 1999] Caprara, A., 1999. Formulations and hardness of multiple sorting by rever-

sals. In Proc 3th Ann. Int. Conf. on Computational Molecular Biology, pages 84–93, New

York, NY, USA. ACM Press.

[Chen and Skiena, 1996] Chen, T. and Skiena, S., 1996. Sorting with fixed-length reversals.

Discrete Applied Mathematics, 71:79–95.

[Christie and Irving, 2001] Christie, D. A. and Irving, R. W., 2001. Sorting strings by re-

versals and by transpositions. SIAM Journal on Discrete Mathematics, 14:193 – 206.

35

[da Silva et al., 2002] da Silva, A. C. R., Ferro, J. A., Reinach, F. C., Farah, C. S., Furlan,

L. R., Quaggio, R. B., Monteiro-Vitorello, C. B., Sluys, M. A. V., Almeida, N. F., Alves,

L. M. C., et al., 2002. Comparison of the genomes of two Xanthomonas pathogens with

differing host specificities. Nature, 417(6887):459–463. 10.1038/417459a.

[Galil and Italiano, 1991] Galil, Z. and Italiano, G. F., 1991. Data structures and algorithms

for disjoint set union problems. ACM Computing Surveys, 23:319–344.

[Gonnet, 1983] Gonnet, G., 1983. Handbook of Algorithms and Data Structures. Interna-

tional Computer Science Services.

[Gu et al., 1999] Gu, Q.-P., Peng, S., and Sudborough, I., 1999. A 2-approximation algo-

rithm for genome rearrangements by reversals and transpositions. Theor. Comp. Sci.,

210(2):327–339.

[Hannenhalli and Pevzner, 1999] Hannenhalli, S. and Pevzner, P. A., 1999. Transforming

cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals.

J. ACM, 46:1–27.

[Hartman, 2003] Hartman, T., 2003. A simpler 1.5-approximation algorithm for sorting by

transpositions. In Proc. 14th Ann. Symp. on Combinatorial Pattern Matching, pages

156–169.

[Hartman and Sharan, 2004] Hartman, T. and Sharan, R., 2004. A 1.5-approximation algo-

rithm for sorting by transpositions and transreversals. In Proc. 4th Workshop on Algo-

rithms in Bioinformatics, pages 50–61.

[Hughes, 2000] Hughes, D., 2000. Evaluating genome dynamics: the constraints on rear-

rangements within bacterial genomes. Genome Biol, 1(6):reviews0006.1–0006.8.

36

[Kaplan et al., 1997] Kaplan, H., Shamir, R., and Tarjan, R. E., 1997. Faster and simpler

algorithm for sorting signed permutations by reversals. In Proc. 8th Ann. Symp. on

Discrete Algorithms, pages 344–351.

[Kececioglu and Sankoff, 1993] Kececioglu, J. and Sankoff, D., 1993. Exact and approxima-

tion algorithms for the inversion distance between two permutations. In Proc. of 4th Ann.

Symp. on Combinatorial Pattern Matching, pages 87–105.

[Kececioglu and Sankoff, 1994] Kececioglu, J. and Sankoff, D., 1994. Efficient bounds for

oriented chromosome inversion distance. In Proc. of 5th Ann. Symp. on Combinatorial

Pattern Matching, pages 307–325. Springer-Verlag LNCS 807.

[Kowalczykowski et al., 1994] Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K.,

Lauder, S. D., and Rehrauer, W. M., 1994. Biochemistry of homologous recombination in

Escherichia coli. Microbiol. Rev., 58:401–65.

[Lusetti and Cox, 2002] Lusetti, S. L. and Cox, M. M., 2002. The bacterial RecA protein

and the recombinational DNA repair of stalled replication forks. Annual Review of Bio-

chemistry, 71(1):71–100.

[Mahillon and Chandler, 1998] Mahillon, J. and Chandler, M., 1998. Insertion Sequences.

Microbiol. Mol. Biol. Rev., 62(3):725–774.

[Martin et al., 2002] Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T.,

Leister, D., Stoebe, B., Hasegawa, M., and Penny, D., et al., 2002. Evolutionary analysis

of arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and

thousands of cyanobacterial genes in the nucleus. Proc. Natl. Acad. Sci. USA., 99:12246–

12251.

37

[Moret et al., 2001] Moret, B., Wang, L., Warnow, T., and Wyman, S., 2001. New ap-

proaches for reconstructing phylogenies from gene order data. In Proc. 9th Int. Conf.

Intell. Syst. Mol. Biol., pages 165–173.

[Parkhill et al., 2003] Parkhill, J., Sebaihia, M., Preston, A., Murphy, L., Thomson, N.,

Harris, D., Holden, M., Churcher, C., Bentley, S., Mungall, K., et al., 2003. Comparative

analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and

Bordetella bronchiseptica. Nat. Genet., 35:32–40.

[Peng et al., 2006] Peng, Q., Pevzner, P. A., and Tesler, G., 2006. The fragile breakage

versus random breakage models of chromosome evolution. PLoS Computational Biology,

2:e14.

[Pevzner and Tesler, 2003] Pevzner, P. A. and Tesler, G., 2003. Genome rearrangements

in mammalian evolution: lessons from human and mouse genomes. Genome Research,

13:37–45.

[Qian et al., 2005] Qian, W., Jia, Y., Ren, S.-X., He, Y.-Q., Feng, J.-X., Lu, L.-F., Sun,

Q., Ying, G., and et al., 2005. Comparative and functional genomic analyses of the

pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res.,

15(6):757–767.

[Rocha, 2003a] Rocha, E. P. C., 2003a. An Appraisal of the Potential for Illegitimate Re-

combination in Bacterial Genomes and Its Consequences: From Duplications to Genome

Reduction. Genome Res., 13(6a):1123–1132.

[Rocha, 2003b] Rocha, E. P. C., 2003b. DNA repeats lead to the accelerated loos of gene

order in bacteria. TRENDS in Genetics, 19(11):600–603.

[Rocha, 2004] Rocha, E. P. C., 2004. Order and disorder in bacterial genomes. Current

Opinion in Microbiology, 7:519–537.

38

[Rocha et al., 1999] Rocha, E. P. C., Danchin, A., and Viari, A., 1999. Functional and

evolutionary roles of long repeats in prokaryotes. Res. Microbiol., 150:725–733.

[Rothstein et al., 2000] Rothstein, R., Michel, B., and Gangloff, S., 2000. Replication fork

pausing and recombination or ”gimme a break”. Genes Dev., 14(1):1–10.

[Sankoff, 2003] Sankoff, D., 2003. Rearrangements and chromosomal evolution. Curr. Opin.

Genet. Dev., 13(6):583–587.

[Sankoff and Blanchette, 1998] Sankoff, D. and Blanchette, M., 1998. Multiple genome re-

arrangement and breakpoint phylogeny. J. Comp. Biol., 5(3):555–570.

[Sankoff and Trinh, 2005] Sankoff, D. and Trinh, P., 2005. Chromosomal breakpoint reuse

in genome sequence rearrangement. Journal of Computational Biology, 12(6):812–821.

[Smith, 1989] Smith, G. R., 1989. Homologous recombination in prokaryotes: Enzymes and

controlling sites. Genome, 31(2):520–527.

[Swidan et al., 2004] Swidan, F., Bender, M. A., Ge, D., He, S., Hu, H., and Pinter, R., 2004.

Sorting by length-weighted reversals: Dealing with signs and circularity. In Sahinalp, S.,

Muthukrishnan, S., and Dogrusoz, U., editors, Proc. of the Fifteenth Annual Combinatorial

Pattern Matching Symposium, volume 3109 of Lecture Notes in Computer Science, pages

32–46, Berlin. Springer Verlag.

[Swidan et al., 2006] Swidan, F., Rocha, E. P. C., Shmoish, M., and Pinter, R., 2006. An

integrative method for accurate comparative genome mapping. PLoS Comput. Biol.,

2(8):e75.

[Tannier and Sagot, 2004] Tannier, E. and Sagot, M.-F., 2004. Sorting by reversals in sub-

quadratic time. In Proc. of the 15th Ann. Sym. on Combinatorial Pattern Matching, pages

1–13.

39

[Trinh et al., 2004] Trinh, P., McLysaght, A., and Sankoff, D., 2004. Genomic features in

the breakpoint regions between syntenic blocks. Bioinformatics, 20:i318–i325.

[Watterson et al., 1982] Watterson, G. A., Ewens, W. J., , Hall, T. E., and Morgan, A.,

1982. The chromosome inversion problem. Journal of Theoretical Biology, 99:1–7.

[Wolf et al., 2001] Wolf, Y., Rogozin, I., Grishin, N., Tatusov, R., and Koonin, E., 2001.

Genome trees constructed using five different approaches suggest new major bacterial

clades. BMC Evolutionary Biology, 1(1):1–8.

40

List of Figures

1 Inferring the order of genomic segments in the ancestor of the bacteria X.
campestris and X. campestris 8004. (a) The comparative mapping is the re-
sult of applying MAGIC [Swidan et al., 2006] to the considered organisms.
MAGIC was run with its default parameters, except for discarding segments of
length smaller than 10000bp. The lines in the figure represent corresponding
rearrangement-free segments (i.e., segments that did not undergo rearrange-
ments) in the two bacteria (since the genomes are circular, the square drawing
should be wrapped into a torus). The mapping suggests that 3 reversals have
occurred since the divergence of the two bacteria, in agreement with the ob-
servations made by Qian et al. (2005). (b) Incorporating the repeats into
the mapping. The repeats were obtained by applying Repseek [Achaz et al.,
2004] to each one of the genomes separately. Repseek was configured to de-
tect inexact repeats having exact seeds of length greater than 25, according to
the biological findings in [Kowalczykowski et al., 1994]. The repeats are repre-
sented by dashed lines and marked by −a, a, −b, b, and −c, c. The repeat pair
−c, c is found in X. campestris 8004 and corresponds to the genomic segments
(706898, 708420) and (4384023, 4385545), which are 1522bp long and share
> 99% identity. The other two pairs of repeats are found in X. campestris.
The pair a,−a corresponds to the genomic segments (4271445, 4272983) and
(4326214, 4327752), which are 1538bp long and share > 99% identity. The
pair −b, b, which has been reported in [Qian et al., 2005], corresponds to the
genomic segments (650675, 652202) and (4326231, 4327758), which are 1527bp
long and share > 99% identity. All the segments ±a, ±b, and ±c have a high
translated sequence similarity (at the amino acid level) to the insertion se-
quence IS1478. (c) The phylogeny and the permutations corresponding to the
mapping in (a). The permutation of X. campestris 8004 is chosen to be the
identity permutation. One cannot infer the ancestral genomic order or decide
during the speciation of which of the bacteria the reversals have occurred.
(d) Applying the new approach which consists of including the repeats in the
permutations and using them to annotate the edges in the phylogeny. Deduc-
ing the genomic order of the ancestor by inverting the permutation elements
surrounded by the repeats yields a unique solution to the common ancestor
genomic order recovery problem. 43

2 A schematic demonstration of a putative mechanism for a recombination
caused by inverted repeats: during DNA replication, a chromosome containing
an inverted repeat pair forms looping structures resulting in an inversion. . . 44

41

3 Calculating the ancestor assignment (a-b) and comparing a legal scenario to an
SBR scenario (c-d). (a) Example of transforming a repmap s to a normalized
repmap s′. The correspondence between the permutation elements of s and
those of s′ is drawn as edges connecting between the respective elements. The
permutation elements in s are given over a different alphabet for clarity sake.
(b) Determining the ancestor in normalized format S ′ and in input format S
from s′. In both (c) and (d) we assume that the ancestor S is known. We
rename s and S to s∗ and S∗ to enable running SBR on them and we compare
a legal scenario (c) to an SBR scenario (d). The reversals are denoted by
brackets, Note that the reconstructed scenarios are different, since one of
them is guided by fulfilling the constraints imposed by the repeats, while the
other is aiming toward minimizing the number of reversals. Lemmas 5 and 14
show that if s∗ is a normalized repmap then a scenario is legal iff it is SBR. 45

4 An example of a RAPT (a) and the corresponding set-trie (b). The set-trie is
obtained from the RAPT by preserving both the tree topology as well as the
edge labels of the RAPT, while discarding the node assignments. The virtual
node assignments of the set-trie are determined from the edge labels — see
Definition 7. 46

5 Given that s = S · ρ, it is convenient to consider S ′, the sorted normalization
of S, and s′ = S ′ · ρ: Proving that a legal scenario ̺′ acting on s′ is also an
SBR scenario implies the uniqueness of the ancestor. Calculating s′ directly
from s enables the reconstruction of S in linear-time. Finally, finding an SBR
scenario sorting s′|N gives a legal scenario on s. 47

6 An example of a repmap s having two inequivalent legal scenarios. The re-
versals affect different sets of permutation elements in the two scenarios. In (a)
the sets of permutation elements are {{6, 2, 8, 4}, {8, 2, 6, 5}, {3, 4, 5, 6}, {7, 6, 5, 4, 3, 2}}.
In (b), however, the sets of permutation elements are {{7, 3, 6, 2}, {6, 3}, {6, 7, 8, 4},
{8, 7, 6, 5}}. 48

7 Algorithm getAncestor . 49
8 An example of an insertion of a new set Ak = {a, c, h} to an existing set-

trie st∗ = (T ∗, g∗) with virtual node assignments f ∗ over the collection A =
{{a, b}, {a, c, d}}. The set-trie before the insertion is given in (a). The cor-
respondences a → ea and ea → e′a are demonstrated by arrays (representing
aToEdge and prevEdge in Algorithms 2 and 3) in (b). This figure also il-
lustrates the Find operation over Ak (see below). Illustrations of the Split

operation and its result are given in (c). In this example Ai = {a, c, d},
Ak ∩ Ai = {a, c}, Ak ∩ Ai − f ∗(v) = {c}. Hence, in the e′a array edge 3 is
not marked while edge 1 is. From this we conclude that etail = 3. This figure
continues the example of Figure 4. 50

9 Algorithm Find . 51
10 Algorithm Split . 52

42

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06
5e

+
06

X. campestris

X
.
ca

m
p
e
st

ri
s

8
0
0
4

(a)

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06
5e

+
06

a -a b-b

c

-c

X. campestris
X

.
ca

m
p
e
st

ri
s

8
0
0
4

(b)

Ancestor

1 ? ? ? ? 6

1 2 3 4 5 6

X. campestris 8004

1−5 4−3 2 6

X. campestris

(c)

Ancestor

1 2 3−4 5 6

1 2 3 c 4−c 5 6

X. campestris 8004

{c}
1−b−5 4−3 a 2−a b 6

X. campestris

{a, b}

(d)

Figure 1:

43

GFEDCBA
> <

BA

G F

>

>
E

D

C

GF-E -D -CBA
> <

Figure 2

44

s = g10 −a −b g12 b −c g3 c −d −g5 d a

s′ = 1 −a −8 −b 7 b −6 −c 5 c −4 −d 3 d −2 a 9

(a)

S′
= 1 −a 2 −d 3 d 4 −c 5 c 6 −b 7 b 8 a 9

S = g10 −a −d −g5 d −c g3 c −b g12 b a

(b)

s∗ = 1 −a −b [4] b −c 3 c −d 2 d a
1 −a −b −4 b −c [3] c −d 2 d a
1 −a −b −4 b −c −3 c −d [2] d a
1 −a [−b −4 b −c −3 c −d −2 d] a

S∗ = 1 −a −d 2 d −c 3 c −b 4 b a

(c)

s∗|N = 1 [4 3] 2
1 −3 [−4 2]
1 [−3 −2] 4

S∗|N = 1 2 3 4

(d)

Figure 3:

45

1−a−d 2 d−c 3 c−b 4 b a

1−a−b−4 b−c−3 c−d−2 d a

{a}

1−a−4−c 3 c−d 2 d a

{c, d}

1−a−b 4 b−3−2 a

{b}

(a)

∅

{a}
{a}

{a, c, d}
{c, d}

{a, b}
{b}

(b)

Figure 4:

46

−−−−−−−→normalize

−−
−−
−−
−−
→

̺

−−−−−−−−→

̺′

−−
−−
−−
−→

̺

−−−−−−−→

̺′

−−−−−−−→calculate

S S′

s s′

Figure 5

47

s = 1 a −7 b 3 c [6 −b −2 −a 8 d −4] −c −5 d 9
1 a −7 b 3 c 4 −d [−8 a 2 b −6 −c −5] d 9
1 a −7 b [3 c 4 −d 5 c 6] −b −2 −a 8 d 9
1 a [−7 b −6 −c −5 d −4 −c −3 −b −2] −a 8 d 9

S = 1 a 2 b 3 c 4 −d 5 c 6 −b 7 −a 8 d 9

(a)

s = 1 a [−7 b 3 c 6 −b −2] −a 8 d −4 −c −5 d 9
1 a 2 b [−6 −c −3] −b 7 −a 8 d −4 −c −5 d 9
1 a 2 b 3 c [6 −b 7 −a 8 d −4] −c −5 d 9
1 a 2 b 3 c 4 −d [−8 a −7 b −6 −c −5] d 9

S = 1 a 2 b 3 c 4 −d 5 c 6 −b 7 −a 8 d 9

(b)

Figure 6

48

Algorithm 1: getAncestor

Data: A repmap s.
Result: The ancestor S of s.
begin1

prev ←− 0 ; current←− 1; k ←− length(s|R) ;2

/* Assuming s′|R = s|R , s′[1] = 1 , s′[2k + 1] = k + 1. */

while current 6= 2k + 1 do3

/* Calculate the index of the successive permutation

element. */

next←− getNextIndex(prev,current,s′) ;4

/* Calculate the sign of the successive permutation

element. */

val ←− getNextVal(current,next,s′) ;5

s′[next]←− val ;6

prev ←− current ; current←− next ;7

/* Rename S′ to calculate S. */

return getS(s,s′)8

end9

Figure 7

49

vr

f∗(vr) = ∅

v

f∗(v) = {a}

g∗(1) = {a}1

u

f∗(u) = {a, c, d}

g∗(3) = {c, d} 3 = etail

x

f∗(x) = {a, b}

g∗(2) = {b}2

(a)

a b c d e h

ea 1 2 3 3 null null

e′a null 1 1 1 null null

(b)

vr

f(vr) = ∅

v

f(v) = {a}

g(1) = {a}1

v′

f(v′) = {a, c}

g(3) = {c} 3 = etail

u

f(u) = {a, c, d}

g(4) = {d} 4 = e′′

w

f(w) = {a, c, h}

g(5) = {h}5 = e′′′

x

f(x) = {a, b}

g(2) = {b}2

(c)

Figure 8

50

Algorithm 2: Find

Data: A set Ak.
Result: The lowest level edge etail whose label intersects with Ak, the

non-empty set B = g(etail) ∩Ak, and the set C = Ak − ∪k−1

j=1
Aj .

begin1

B ←− ∅ ;2

C ←− ∅ ;3

etail ←− 0;4

for a ∈ Ak do5

e←− aToEdge [a] ;6

mark prevEdge [e] ;7

for a ∈ Ak do8

if aToEdge [a] = 0 then C ←− C ∪ {a} ;9

else if aToEdge [a] is unmarked then10

B ←− B ∪ {a};11

etail ←− aToEdge [a] ;12

return etail,B,C13

end14

Figure 9

51

Algorithm 3: Split

Data: The edge etail, and the two sets B and C.
Result: Splitting the edge etail as follows: adding a new edge e′

according to the set B, redefining etail according to g(etail)−B,
adding a new edge e′′′ according to C, and updating aToEdge,
prevEdge, edgeElementsCount, and count.

begin1

if edgeElementsCount [etail] 6= |B| then2

count ←− count +1;3

e′ ←− count ;4

edgeElementsCount [e′]←− |B|;5

edgeElementsCount [etail]←− edgeElementsCount [etail]− |B|;6

prevEdge [e′]←− prevEdge [etail] ;7

prevEdge [etail]←− e′ ;8

for b ∈ B do aToEdge [b]←− e′;9

else e′ ←− etail;10

count ←− count +1 ;11

e′′′ ←− count ;12

for c ∈ C do aToEdge [c]←− e′′′ ;13

prevEdge [e′′′]←− e′ ;14

edgeElementsCount [e′′′]←− |C|;15

end16

Figure 10

52

